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Abstract

To perform useful tasks in everyday human environmenttsainust be able to both understand and communicate thetisgizsa
they experience during haptic interactions with objectsvard this goal, we augmented the Willow Garage PR2 robdt avjpair
of SynTouch BioTac sensors to capture rich tactile signating the execution of four exploratory procedures on 60skbold
objects. In a parallel experiment, human subjects blindiiched the same objects and selected binary haptic adiedtvm a
predetermined set of 25 labels. We developed several madbémning algorithms to discover the meaning of each &dgfrom
the robot’s sensory data. The most successful algorithme these that intelligently combine static and dynamic congmts of
the data recorded during all four exploratory procedurdse fest of our approaches produced an average adjectigfickson
F1 score of 0.77, a score higher than that of an average humgactub
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1. Introduction

1.1. Motivation

Manipulation of objects in the real world is a task that goes
beyond locating and grasping items of interest. Object® hav
material properties that need to be properly identified ifgefo
one can reliably handle them. For example, it is well known
that a human attempting to lift an objedt a table adjusts his :
or her grip force and subsequent hand movements based on thfF===
codficient of static friction between their fingertips and the sur
faces of the object [1]. Practically speaking, slipperyects
need to be grasped more firmly and must be moved less aggres
sively than sticky objects. When executing a manipulati@ampl
humans continually predict the tactile signals they widlifand
compare their predictions with the actual sensations that o Figure 1: A PR2 robot prepares to touch a car-washing sposige tiwo Bio-
cur to monitor their progress and correct any mistakes [2]. T 126 Sensors installed in its left hand.
achieve the envisioned benefits of robotic manipulationun h
man environments [3], robots must develop a similar level of _. . .
mastery over physical interaction with unknown objects. Given the opportunity for robots to function as helpers, we a

Beyond the necessary skill of manipulating everyday object particularly motivated by the task of learning to descrilogvh

robot helpers must also be able to interact smoothly with hupbjectS feel to touch, a challenging undertaking that segui

mans who have little or no technical training. Natural |azgy cle_ver phys_ical intergction, rich haptic sensing, and sbioa-

is likely to be a comfortable communication modality for alevi chine learning techniques.

range of potential users|[4, 5, 6]. Like human children, tsbo  One valuable immediate application of a robot that can ver-
will need to be able to learn new words and concepts througRally describe what it feels would be to provide automatedi an
direct observation of and interaction with the world. Thektaf ~ Standardized descriptions of physical products such ah-clo
perceptually-grounded language learning requires onertergy  ing, stationery, and hand-held electronics. In the agetefiret
alize from a small number of examples to deduce the underlyshopping, online consumers frequently purchase things-wit

ing pattern that captures the meaning of the word beingéearn out knowing what they will feel like to touch. Consumers are
less likely to purchase products in this situation, pat&idy

products that have a strong tactile component [7]. One way to
1These authors contributed equally to this work address this issue is to provide consumers with scores filem i
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dustry experts who have rated these objects using metrits sua set of beverage containers through touch alone. For the
as KES-FB and FAST. [8], which attempt to quantify the tac-similar task of discriminating containers from non-cons,
tile properties that people prefer. These metrics are dedig Griffith et al. [15] demonstrated that the best classification re-
for internal product reviews and are not as useful for the-ave sults are achieved when the robot executes a large number
age consumer as a detailed and unbiased verbal descriftion af interactions on the target object while attending to diee
the product’s feel. Such a system would allow consumers tgources of sensory data including sight, sound, and touof. S
search directly for the haptic adjectives they would likeads ilarly, Sinapov et al.l[16] had a custom robot equipped with a
uct to have, such asoft smooth andnice Ideally, these labels vibration-sensitive fingernail use various scratchingions to
could be learned automatically from direct physical exaapl recognize and categorize everyday textures, with the leest r
and applied to new products in an impartial manner, a tagk thaults coming from the use of several motions [16]. Oddo et al.
is perfect for robotic technology. Haptic adjective destions  used a dierent novel tactile sensor to achieve good accuracy
have previously been explored in humans [9], but the use of & discriminating surface roughness|[17]. More recentighEl
robot to perform this task is largely novel. and Loeb used a novel biomimetic sensor (SynTouch BioTac)
To investigate the feasibility of robotic learning of hapti to interact with a library of 117 everyday textures, aclievi
adjectives through physical interaction, we created tistesy  95.4% accuracy in identification through the use of cleveey
pictured in Fig[. We sought to enable the depicted robotected tactile features and Bayesian techniques for chgdake
to autonomously explore objects with its sensorized firgert most useful movements to perform [18]. Other valuable work
and report back an appropriate set of descriptive haptiecadj on the robotic use of tactile sensors also tends to focusamyre
tives. This goal was accomplished by conducting and anmadyzi nizing particular object instances [19/ 20], a task thatlated
two experiments: one in which the robot felt a wide variety ofto but distinct from our goal of learning haptic adjectives.
household objects, and another to discover which hapticadj  The specific task of quantifying tactile sensations has been
tives humans used to describe these same objects. We devekplored in the domain of product evaluation for items such
oped new methods for processing the heterogeneous and mulgis fabric [8] and skin cream [21]. To aid researchers in inter
modal time-varying information generated by each intéoact  preting the results of opinion studies, there have been afew
and we tested severalftéirent techniques for learning the as- tempts to develop custom systems to quantify these sensatio
sociations between the robot's haptic signals and the humanmsing machine-learning techniques, €.g, [22, 8]. Howelese

generated haptic adjective labels. past approaches have typically used single sensor inphishw
cannot match the richness of human tactile sensation. Mere r
1.2. Related Work cently, Shao et al. showed that accurately evaluating thieofe

Humans are capable of haptically recognizing familiaréhre different packaging materials requires man§estient channels
dimensional objects through direct contact in just one @ tw of touch perceptior [23]. The need for multi-modal sensing t
seconds with near 100% accuracy [10]. Individuals accashpli automatically identify dierent textures was also noted in the
this impressive feat by taking advantage of a rich array of ta work by Fishel and Loeh [18].
tile and kinesthetic cues including contact location, pues, Since the data from haptic sensors usually streams ovey time
stretch, vibration, temperature, finger position, fingdoey,  time-series analysis has often been employed to extramt-inf
and muscle force [10/ 2]. We similarly believe that tactil®s  mation from signals recorded during physical interactidfar
are essential to enabling a robot to acquire language and exgxample, haptic signals collected from an artificial skirerv
cute manual tasks with high accuracy. Furthermore, theeseis 3 ropot's entire body were successfully clustered and categ
touch is inherently interactive — how you move your hand sig~ized into human-robot interaction modalitiés|[24]. Sianiy,
nificantly dfects the tactile sensations you feel. Interestinglya ropot learned to segment tasks by classifying time-sdeits
humans adopt consistent “exploratory procedures” (EP€YWh gptained from an accelerometer and a camlera [25]. Our own
asked to make judgments about specific object propertids [11analysis of time-series data is based on and draws uportthe i

For example, the EP of lateral fingertip motion reveals s@rfa erature in speech recognition, most notably the use of iidde
texture, pressing shows its hardness, and static contatodes  \Markov Models [25].

temperature and thermal conductivity. We believe roboésirze
corresponding set of exploratory procedures to best gate
the objects they encounter. 1.3. Relation to Previous Research

Many robotics researchers have leveraged insights abeut th
human sense of touch to improve robotic manipulation. Early This article builds on preliminary research we published as
work by Okamura et all [12] presented robot fingers that rolishort workshop paper [27] and a conference paper [28]. The re
and slide over the surface of an object to determine texturesearch reported here significantly extends and refines aur pr
ridges, and grooves. Romano et al. [13] imitated humanl¢acti work, particularly by including more objects, running a-for
sensing channels and reactions to enable a robot with simplaal human-subject study to obtain adjective labels, iigefitly
tactile sensors (Willow Garage PR2) to pick up, move aroundmerging the traditional approach to feature extractiornwitr
and set down unknown objects without dropping or crushinghovel HMM-based approach, rigorously and consistently-eva
them. In a more perception-focuseffogt, Chitta et al.[[14] uating classifier performance, and thoroughly interpgetiti
used the same robot to deduce the identity and contents oésults.
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Figure 2: The 60 objects included in the Penn Haptic Adjec@orpus 2, organized by their primary material. Many are hoalsetems, and the rest are made
from raw materials. Some objects were folded, layeredjaralit to meet the size and stability requirements for robatieraction.

2. Materials are sharp, pointed, cold, or hot to avoid damaging the Bis.Tac
) Furthermore, all included objects are clean, dry, and darab
2.1. Robotic Hardware prevent damage to the system’s electronics and to maintain a

To best emulate what humans experience when exploring olzonsistent feel over time.
jects, we mounted state-of-the-art sensors capable dftdeia
wide array of tactile signals onto a humanoid-robotic latf.
Specifically, we developed a method to custom-install tme-Sy 3. Experimental Setup
touch BioTacs (biomimetic tactile sensors) in the grippea o
Willow Garage PR2 (Personal Robot 2). The modification was To understand and generalize the experience of touching ob-
successfully performed on PR2s at both Penn and UC Berkelejgcts, we need knowledge of both how an object feels and how
Full details on the integration and the software interfagekp  to describe those sensations. A touch-sensitive robotlan s
ages can be found in our previous work![28] as well as on ouus precisely through bits and bytes what it has sensed, bas it
project websitel [29]. The source code for all the approacheso means to describe what impression the experience has made
described in this paper, including the code to interfaclwie  On the other hand, humans can describe their perception of an
PR2 and the Syntouch sensors, is available dfline object in words, but they cannot precisely share what thigy fe

The PR2 has two 7-degree-of-freedom (7-DoF) arms that We developed two parallel experiments to capture the infor-
each terminate with a 1-DoF parallel jaw gripper. One Bio-mation necessary to learn the meaning of a representatio¢ se
Tac is attached to the distal end of each finger of the lefpgrip haptic adjectives. Both the augmented PR2 robot and a group
to allow the robot to experience rich tactile sensationd as4  of human subjects touched the 60 objects shown in[Fig. 2 un-
closes, squeezes, and strokes objects. The setup can be sdencarefully controlled conditions that included no videad-
in Fig.[d. Each human-fingertip-sized BioTac is comprised ofback, no auditory feedback, and no prior knowledge of the ob-
a rigid core surrounded by conductive fluid within a flexible jects. As described below, the two experiments were dedigne
silicone skin[18]. The BioTac provides measurements of low to give the robot and the human subjects as similar an experi-
frequency fluid pressurdfc), high-frequency fluid vibrations ence as possible.
(Pac), core temperaturelc), core temperature changEag),
and faset of ninetefen electrode impedan_E@s.(. E1o) spatially 3.1. Robotic Exploration
distributed across its heated core. Data is read from bagleifin
at 100 Hz; each packet includes P2c readings and one read-  For the PR2 to interact with the objects, we programmed a

ing of each other type. custom controller in ROS (Robot Operating System) to petfor
a fixed set of exploratory movements. As described.in [2&], th
2.2. Objects controller is fully integrated with ROS tabletop object elet

The enhanced PR2 interacted with 60 objects that representi@ @nd can use motion-planning algorithms to autononyousl
wide range of physical properties within the limits of whaet ~Place the robot gripper around the object. However, to speed

robot can grasp. As seen in Fig. 2, each object is able to staritP data collection, we programmed the robot to move its open
upright on a table and has two flat, parallel, vertical sidis w 9riPper to a fixed point above the table. The target object was
identical surface properties. To fit between the BioTacshea then placed on the table within the gripper with a small rando

object is between 1.5 cm and 8 cm thick. To allow the pRraPerturbation in pose designed to mimic the uncertainty ef au
to slide vertically down the object without colliding withe ~ {2NOMOUS object perception. This process is necessanfanly

table, the objects have a minimum height of 10 cm. No object§2Pid data acquisition, and the tabletop object detectipelipe
can be used for the general case when the object position and

shape are unknown. Moreover, as introduced in [28], the con-
2httpsy/github.coniimcmahon0fPenn-haptics-bolt troller has an initial probing phase where it adjusts themgr




position so that the object is centered between the fingers. B jbsorbent fuzzy Jce
cause all of the tested objects have parallel sides, the'sobo
two fingers contact the object equally.

0 sticky
bumpy GRITTT*  porous soft texbured

Once the gripper is around the object, the PR2 begin§empressible  Haro  rough solid  thiclx
the following sequence of four Exploratory Procedures JEPs cool Zyw seratchy springy thin
<

SqueezeHold, Slow Slide andFast Slide We designed these
EPs to match a subset of the archetypal movements humans
make when touching objects to discern their haptic proper-
ties [11]. The human EPs of Pressure, Enclosure, Static Corfrigure 3: The 25 adjectives selected for both the humans anrbtot to use

tact. and Lateral Motion were selected from Lederman andp describing each object. Each adjective’s text is stdihere to convey its
’ meaning, but they were all presented to the human subjectstandesd font.

Klatzky's full list [11] because they can be reliably exesiit “Gritty” is marked with an asterisk because the human subjdidisiot agree
by our two-fingered robot. For the robotic EPs based on Lateran a single positive example of this adjective, so it is omitiexin further
Motion, we also drew inspiration from Fishel and Loeb’s work discussion in this paper.

on using a BioTac for texture recognitian [18]. A full degeri
tion of each EP can be found in [28].

Before the robot begins executing the EPs, it perforiisa-
ter action to equalize the contact pressure between the two Bi X )
Tacs. For this step, the PR2 repeatedly closes its grippér un under protocol #816464. Subjef*c_ts gave informed consent and
it feels contact, opens, and moves its gripper a small amouft®'® compensatet;l $1.5 for partlmpatlon. ]
toward the finger that first touched the object. This statssend The primary objective of this study was to obtain human-
when both fingers contact the object at approximately theesam/e€'ified labels of a range of haptic adjectives for each obre
time. The PR2 then performs a high velocTgpto confirm the ~ JECLS in our corpus. Our preliminary work on this project]28
centered location of the object. Although we previouslynide tested a list of 34 adjectives in a pilot study that included/o
tified it as an EP, here we omit data from this very bifap ~ four participants. Analysis of the responses given by tisese
interaction because it yields little unique informatioroabthe ~ J€cts showed that certain adjectlyes in this list were natdpe
object and was not based on a human exploratory proceduréSed at all, while others were highly correlated with one an-
The gripper opens by a small amount wHkap completes. o_ther. Th(_a irrelevant ar_1d replun_dant adject|_ves_were rechtove

The first EPSqueezewas designed to match the human gpYield the list of 25 haptic adjectives shown in Figlie 3.
of Pressure, which is used to discern object hardness [Erp,H ~ The study participants consisted of 34 right-handed and 2
the gripper closes at a constant slow Ve|ocity to a Speet';@ left-handed individuals, 10 male and 26 female, ranginggiﬂ a
value before opening at the same constant velocity untibme ¢ from 18 to 21 years. All were college students with normal
tact is felt on either finger. The controller then transiidn ~ Upper-limb motion and hand function. During the experiment
Hold, which was designed to correspond to the human EPs dhe subject was seated at a table in front of a vertical paite.
Enclosure (global shape and volume) and Static Contact (ten$ubject could reach around the panel but could not see their
perature)![11]. After closing to a proportion of the full dep hand or the object. Each object was held in the air by a ring
reached during the previous state, the robot gently holds thstand to prevent the participant from touching the tableécivh
object for ten seconds to let the heated fingers reach thermBlight have served as a tactile reference. This restrictism a
equilibrium with the object, which begins at room tempera-beneficially averted the human tendency to lift and move the
ture. The final two EPs have the robot move its hand downobject, which was prohibited because the augmented PR2 is no
wards while lightly holding the object, creating slidingenac- ~ capable of lifting all of the selected objects. A three-jsamtvey
tions that match the human EP of Lateral Motibn [11]. Similarwas presented on a computer display visible to the subjdtt. A
to [18], Slow Slideuses a stronger contact with a downward participant responses were provided verbally and recobyed
speed of 1 cits, while Fast Slidehas half the contact strength the experimenters and a video camera. During the experjment
and a speed of 2.5 ¢gm the subject wore noise-cancellation headphones playiritewh

This whole procedure was performed ten times on each ghoise to hide sounds produced by interactions with the ¢bjec
the 60 objects, with slight repositionings each time, syl  as well as ambient noises. These headphones were also used to
in 600 robotic data collection trials. Each robotic triabkoap- ~ communicate verbally with the subject throughout expenitne
proximately 90 seconds to complete. As done for our prelimi- Subjects were instructed to use only their index finger and
nary dataset of 510 trials [28], these results were savedd& R thumb to interact with the presented objects. Four expboyat
“pagfiles” that contain time histories of many PR2 sensore T procedures were allowed: pressure, enclosure, stati@acint
work reported in this paper uses only the PR2 gripper pasitio and lateral movement. In order to mimic the robot’s inteoant
the PR2 gripper aperture, all readings from both BioTac senwith the objects, subjects were not allowed to scratch tifist,
sors, and the timing of the controller’s states and sutestat or perform any other action on the object. They were also told

to avoid contact with the object’s edges and adjacent sesfac
3.2. Human Subject Study Every participant was presented twice with 20 objects, tvhic

To understand how people describe their haptic interagtionwere evenly chosen from the 60 objects in the corpus. Each

with the same set of 60 objects, we conducted an experimeibject was thus touched by approximately twelve individu-
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Figure 4: These haptic signals were collected from one ofisthe PR2 robot exploring the Blue Sponge object shown in[BigThe recording is automatically
segmented into the exploratory procedure phases using ltioé controller states. All BioTac sensor reading are in nigaéunits of the twelve-bit ADC. These
BioTac signals are centered at zero during non-contadt, tvé exception of the temperature sigrialc.

als. During the first randomly ordered presentation, thgestib 4. Experimental Data

commented freely on the feel of each object. This step served

to familiarize the individual with the range of objects are t 4.1. Robot

testing procedure. We had the subject touch a compliargsstre We extracted several relevant haptic signals from the tesgfil
ball between trials to attempt to wash out their tactile mgmo recorded during the robot’s interactions with the 60 PHAC-2
of the previous object. The second randomly ordered presembjects. Figurél4 displays the PR2 and BioTac data from a sin-
tation of the objects involved both binary and Likert rasraf ~ gle interaction with the object Blue Sponge. Coming from the
pre-determined haptic adjectives. A randomly ordereddist robot, the signaXy shows the gripper aperture (distance be-
the 25 haptic adjectives shown in Fig. 3 was first shown on théween the fingertips), where a reading of 0.1 m means the grip-
screen, and the participant selected the words they camrside peris completely oper;; is the vertical position of the gripper
characteristic of the object. There was no minimum or maxiwith respect to the robot's torso coordinate frame. The -addi
mum number of adjectives to be selected. Immediately follow tional five sets of signals were gathered from the BioTacamsns
ing this verbal checklist, the subject rated the same objetén  themselves. Each of the pressuRed, Pac) and temperature
basic haptic adjectives using a five-point Likert scale.sThi  (Toc, Tac) graphs contains both left finger (light signal) and
nal step was included to test hypotheses about specificyanton right finger (dark signal) readings. The nineteen spatididy
relationships among common haptic adjectives and is thts ndributed electrodes in each finger are presented sepatataiy
considered in this paper. interpretation.

Before the robot’s fingers have come into contact with any
object, we calculate and store the mean of every BioTac sig-
nal except core temperaturByc. These means are subtracted

3.3. Penn Haptic Adjective Corpus 2 from subsequent measurements in that run to mitigate sensor
drift and discrepancies between the two BioTacs. Thesedero
signals are made available to the machine learning pip@iine

Together, the results of both experiments constitute timaPe addition to the unmodified versions of the signals. During a

Haptic Adjective Corpus 2 (PHAC-2). This corpus containstrial, each EP’s signal is automatically segmented to ielu

all data from the 600 trials collected during the robot exper only the portion of the movement containing physical intera
iment as well as all of the labels collected during the humariion with the object (highlighted in Figufé 4). The duratioh
subject study. PHAC-2 is a significant improvement over thethe reduced signal varies by movement and by object. These in
original Penn Haptic Adjective Corpus 1 (PHAC-1) because itieresting controller subsections are passed to the malefzine
includes nine more objects and three times as many humaf?g pipeline for feature extraction.

provided labels per object. Furthermore, the PHAC-2 aijject

labels are likely to be higher quality than those in PHAC-1 be 4.2. Human

cause they were collected with more standardized procedure Each of the 36 individuals who participated in the human

involving subjects who were completely naive to the redearc subject study provided 25 binary adjective ratings for eaich
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Number of Positive Examples Yielded

viding the collected database into train and test sets. Ve ai
to create a separate binary classifier for each of the adscti
listed in Figurd B, so we needed twenty-fouffeiient trairitest
splits (omittinggritty, which did not apply to any object). Each
of these traiftest sets contains all 60 objects, since any given
object was labeled as either a positive or negative exanfple o
each adjective by the majority vote.

Each adjective’s split between training and testing exaspl
was based on the positive and negative majority-vote labels
These splits were constructed by gathering at least 10% of al
positively labeled and at least 10% of all negatively latiele

objects into the testing set for each adjective. The remgini
~90% of positive and negative objects were placed into the
training set. Notice that all 10 runs of a given object werptke
on the same side of the trdiest split to avoid fitting classifiers
Figure 5: The number of objects that subjects identified adtippexamples g an object rather than the underlying adjective. The numbe

for each of the 25 adjectives. The colored levels indicagepitoportion of the . . . . .
subjects choosing a given object for a given adjective. kamgple, only one of ObJECtS in each testing set can be determined by eanJatln

of the sixty objects (Kitchen Sponge) was labegéorbenby more than 90%  the following equation twice, once for all positive exangéand
of the subjects who touched it, but 28 total objects werelébabsorbenby ~ once for all negative examples:

at least one subject. We selected a threshold of 50% to prdtiel ground-

truth haptic adjective labels for the sixty objects. Theeatiyes are arranged in Niest= [0.1 - y] (1)
decreasing order of positive examples, as determined by #tenad@jority.
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wherey is the total number of positive or negative examples for

the 20 objects they touched, yielding a total of about 12 humathis particular adjective. After the size of each set wagmet
interactions per object. In this data set, a rating of 1 §igmi Mined, the members of each set were randomly selected withou
that the subject thought the object exhibited the qualidfebe  replacement from the available options. This proceduresyua
given adjective_ For instance' Subject 17 said the Blue won tees the presence of at least one pOSitive and at least one neg
wasspringy, soft squishy andthick, rating all of the other ad- ative example in the testing set for every adjective. To give
jectives a binary 0 for this object. The number of adjectivesconcrete example of our method for choosing tftasst splits,
selected for a given object varied from subject to subject anconsider the adjectivabsorbentwhich has 11 positive object
also from object to object within the same subject; the mini-examples and 49 negative object examples. Equdflon (Dsyiel
mum was 0, the maximum was 11, and the median was 5. @ test set containing 2 positiasorbentobject examples and
Fig.[d shows the number of objects that subjects selected &hegative examples. The remaining 9 positive objects and 44
being characteristic of each adjective, with a breakdowthef —Nnegative objects form the training set.
percent agreement. Given these binary vote counts, we had toWe set up a special case to handle the three adjectives that
devise a uniform method of choosing an overall binary labehave only one positive object examptece, stickyandunpleas-
for a given Object-adjective pair_ The human votes weréethll ant Since it was impossible to create whole positive training
and then normalized by the total number of individuals whoand testing sets, we split these objects by trial. Five ramyo
felt that object. If more than 50% of the human subjects kel Selected trials for the adjective’s positive object wersigieated
an object-adjective pair positive, the overall majorityevavas ~ for the training set and five for testing.
labeled positive. Under this paradigm, the Blue Sponge show
in Fig.[1 was labeledbsorbentcompressiblgsoft, andsquishy 5 Features
Interestingly, the adjectivgritty was not applied to any object
by more than 50% of the human subjects, so it was omitted from While the human adjective labels are simple to comprehend,
consideration for robotic adjective learning. Furthereydhree  the robot recorded a voluminous quantity of diverse datiandur
other adjectivesr(ce sticky, andunpleasantwere found to  each of its 600 trials, as exhibited in Fig. 4. Thus, we hachi i
apply to only one object each (Applicator Pad, Silicone Bloc good ways to select a small number of numerical values (fea-
and Coco Liner, respectively), leaving no opportunity flee t tures) to represent each channel and EP of the interaction fo
robot to learn to generalize the meaning of these words withi yse in our machine learning algorithms. We approachedreatu
this set of objects. selection from the two complementary viewpoints of (1) cal-
culating static values using hand-crafted formulas and¢g)-
4.3. Train and Test Sets puting novel dynamic values using automatic signal prangss
All of the selected robot interaction data and all of the Investigation of both types of features is well motivated by
majority-vote haptic adjective labels were combined into athe fact that humans attend to and combine a variety of sgnsor
database for use by our machine learning algorithms. To alkues when judging the haptic properties of objects [11]. For
low us to not only train our algorithms but also test their-per example, Tan et al. conducted a clever set of experiments-to d
formance on new interaction data, we devised a method for dtermine whether subjects touching virtual objects throrgid
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Table 1:Ppc Feature Equations Table 2:Pac Feature Equations

Maximum Mean Greatest Slope Change Feature Equation
maxPoc)  £>14(Poc)  max(Ppc(n) - Ppc(n- 1)) N
o 252y [ESD(wk) + ESD(wk:1)]
plates base their estimates of compliance on the actual com- SC %
pliance of the surface, the terminal force felt during theeiin S ESDw)(w-S O
action, angbr the mechanical work done by their fingers| [30]. SV > ESDw)
The precise mechanisms of human haptic perception are not S~ ESD(w)-(0-SC)?

. ; . SS Y R—
known for all possible object properties, nor do we assurat th SV3.3"ESDw)
the augmented PR2'’s sensory capabilities are perfectighaet SK LESDW)-w-SV' _ 4

S\ ESDw)

to those of a human, so we sought to create a wide variety of
potentially useful features. Our static method followsvpre
ous research on robotic texture categorization such a®lFish @ ®

200 200

and Loeb|[18] and Sinapov et al. [16], where features are- care | Slow Siide Fast Siide
fully designed based on knowledge of human and robotic touc '™ . i
to capture salient characteristics of the signal. Our dyoam 5 o R, Iw‘-«"""""”-"‘"-.""'h* T 0
method takes a very fierent approach and aims to model the - oo v 0]
way the entire haptic signal changes over time.

I I TR TR M0 ses e es
5.1. Static Feature Calculation Tmz;m Tm:“[s'\

Our static method calculates single-valued features figam t 4 sc=224 4| isc=ter
robot’s tactile and kinesthetic sensations; as discuss&bc- 3| sresome - Srmoss
tion[4.], all BioTac signals excefbc are zeroed at the start of 32_'73‘”“‘ 5 Bv=ss
each trial. Features are then extracted from the most mleva > smom e sems
time segments of the four EPSgueezeHold, Slow Slide and 'M‘””‘ I V2N B =538
Fast Slide The selected segments are highlighted in Figlire 4 % B @ o % m oW w1
Tequency (Hz) requency (Hz)

Each of the features described below is calculated for eawh B
Tac for each of th.e four EPs. This segmenta}tlon by E.P aIIOW1$—igure 6: Features created from the rBwe signals from botfSlow Slideand
us to analyze the impact of each EP on learning a particutar adast Slidefrom an exploration of the object Car Sponge. (a) and (b) show

jective and also ensures that each EP has equal representatihe raw signals from a single BioTac. (c) and (d) show the ecsiun to the
in the input frequency domain and the values pulled out for each of the diatifes.

Low—Frequency Fluid Pressure (g). T_he first two features EPs can be seen converted from By to the selected static
are the maximum and mean &c during the EP segment, o
features in Figurgl6.

chosen to capture the finger’s internal pressure change. Thé

third feature finds the greatest change in a smoothed versig
of the Ppc signal’s slope over time. The equations for these&)re Temperature (Ic) & Core Temperature Change Ad).

three features are shown in Table 1. These static featunes weThe BioTacs are internally heated to above human body tem-

selected because of the noticeabl@dence inPpc signal size Fheéature, S0 they transfer hiat t\?vany fr oomd-temperitbuiaicl_sm
and shape betweentand compliant objects. y come into contact with. We referred to work by Lin et
al. [31] for guidance on processing the temperature channel
of the BioTacs; their investigations showed thgt: and Tac
&an capture the thermal conductance dfedient materials. The
rate at which the heat is transferred varies between objécts
different material and geometry. We capture this transfer rate
by calculating the total area under thgc curve and the time
constant of an exponential fit o pc over time. The equations
for these static features can be found in Table 3.

High-Frequency Fluid Vibrations (k). Recent work by
Fishel and Loeb showed that frequency-domain analyses
BioTac contact vibrations are very successful for textlmesi-
fication tasks [18]. To obtain our features, we first conwktte
2200 HzPac temporal vibration signal into a non-normalized
energy spectral densitigSD, wherew is the vector of frequen-
cies, as follows:

2 Electrode Impedances (EE;q). The BioTac'’s 19 electrodes

1
= gF(‘“)F*(‘U) ) give spatial information about the contact between the finge
and the objects. Because the electrodes are all connedieel to
To represent th&SDvia single-valued features, we computed same volume of conductive fluid inside the finger, we found
the total energy of th&SD curve, plus the spectral centroid that many of the electrode signals are highly correlatedh wit
(SC), variance (SV), skewness (SS), and kurtosis (SK) ubig one another. We used this knowledge to lower the dimension-
equations shown in Tablg 2. A specific run of the two slidingality of the 19 electrodes to the two most significant priatip
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Table 3: Thermal Feature Equations
Area UnderT ac Tpc Curve Profile
N-1
tmax—tmi ~L
tmagton [ Tac(t) + Tac(ti:1)] PL+ P2€
k=1 — left finger
1700 — right finger |]
16005 100 200_ 300 200 500
Table 4: EP-based PCA Variance for the 19 Electrodes ) ‘ . Time Sfep
EP First Component Second Component | i | /’\
Squeeze 91.7% 3.4% ‘ \ AN
N ¢ *-o-0-0-0-0-¢ o-o -0 -4
Hold 91.7% 3.2% g1
Slow Slide 79.7% 11.3% & \ I/
. \
Fast Slide 84.7% 6.9% L
S
a ° T 4

10
Resampled Time Step

15
Table 5: Robot Feature Equations
Max. Aperture  Min. Aperture Height Range

max( Xg) min(Xg) max(Zyt) — min(Zyr )

Figure 7: An example of the vector quantization produced ky MM
pipeline. The upper graph shows the signals of Byg sensors on the right and
left fingers. The lower graph represents the correspondimpsls produced
by vector quantization. This example used only 4 of the alokdl& symbols in

components using Principal Component Analysis (PCA) [32]he
PCA was performed separately on the 19 channels of data from
each EP to capture the unique characteristics of each type of1
interaction. The top two components were found to capture
the majority of the variance, as can be seen in Table 4. Once
the 19 electrodes have been reduced to their two highest prin
cipal components, we fit a fifth-order polynomial to each com-
ponent’s cofficient over time. The 12 céicients of the two
polynomial equations are our static features for the edelets.

Robot Channels.The first two features that depend directly on
the robot’s movement are the maximum and minimum of the
PR2's gripper apertureX() during the selected EP, values that
change dramatically with object thickness and compliaite.
third static feature based on robot motion is the range of the
gripper’s vertical position4;s). This feature was selected to
capture the amount of friction between the BioTacs and the
object, since the robot hand tracks its desired positionemor
closely when the object is slippery. The corresponding equa
tions are shown in Tablég 5.

These methods give us 47 static features per EP per trigiebro
down as 22 for each BioTac and three from the PR2.

5.2. Dynamic Feature Calculation

alphabet.

. PCA Principal Component Analysis [32] reduces the di-
mensionality of the input data while retaining a percent-
age of the variance. We calculated the minimum number
of new dimensions such that 97% of the input’s variance
was retained. Our experiments revealed that even for the
36-dimensional vector corresponding to the two fingers’
electrodes, as few as 4 dimensions wenéicent to rep-
resent the data. The output of PCA ia & r matrix.

2. ResampleAn HMM calculates the probability of observ-

ing a sequence of symbols. This product of probabili-
ties becomes lower as the length of the input sequence in-
creases. To avoid numerical instability and over-fitting, w
resampled the PCA data to an< n dimensional vector
using linear interpolation. The output is anx r matrix.

3. Discretization Once an input signal is reduced in dimen-

sions, we use vector quantization|[33] to convert it to dis-
crete symbols drawn from assized alphabet. In other
words, we treated thea x r input matrix agnindependent
r-dimensional vectors and performed K-Means to identify
sclusters. The output ism-dimensional vector of discrete
elements.

Figure[T shows thefkects of the above pipeline on a sample
Our dynamic features seek to encapsulate how the robotjair of Pac signals recorded when the robot perforngidw
tactile sensing signals change over time. Here we consiger t Slideon the Art Notebook. The output is a 20-dimensional vec-
Poc, Pac, Tac, andE; ... Ejg BioTac readings over all four tor of discrete symbols drawn from an alphabet of cardin&lit
EPs, omittingTpc, Xg, andZ;s because they largely correlate Only 4 of the 5 available symbols were used by this particular
with the chosen tactile readings. As done in our prior wof{4[2 time series. Whenever a significant change happens in the inpu
we used Hidden Markov Models (HMMs) [26] to capture the data, there is a corresponding change of symbol. The pielin

variations in the data. Since HMMs rely on an alphabet ofdinit is otherwise very robust to noise.

symbols, the first step was to create an adaptive discrigtizat
pipeline that converts the raw haptic signals into symbolse
following three-step pre-processing pipeline takes astmfhe
signals coming from both fingers as ax d matrix, wheren is
the number of time steps in the recording ahi$ the number
of channels for a given sensor times two fingers.

Training the HMMs. We train our HMMs using the Baum-
Welch algorithm with the discretized signals as input. Asisu
marized in Tabl€]6, the discretization pipeline and the HMMs
have hyper-parameters that strongly influence their behavi
To identify the best values for these parameters, we sgit th
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Table 6: Parameters to train the HMMs. Glass Bottle \Al;mmun odass Container

Parameter Values Description N ryfﬁi?m"' s:el m |
i - ’lywooc Saged Plastic
h [12,15,18] Number of hidden components * Fged N
with the HMMs Machined Plastic Chtting Board Soap Dispenser

.
Fiberboard

m [20,25,30] Resampling size Pen Cose ek Aerytic Plastic Dispenser
s [5,10,12] Number of clusters in K-Means . PkFoam (Tho oo
Art Notebogk % ed Cork Cookie Box
01 Gray Erfser
Corkboard Logial.]Bluc Toothpaste
.. . .l .. .. ) Black Erasere
training data set into/3 for initial training and the remaining | Red Tootpate o © Colorhl Book

b i X T
Cosmetics Box Ct.lshioncd Envelope .arp

1/3 for training evaluation. We used cross-validation to cele

ac) a . L
Black Foam pcl) Noodle

1st Component, 39%

the parameters that yield the greatest log-probability avee- Notepady ® 11 P
quence. Each HMM is trained to recognize a time series com™ ™ Chascoal P g © Placdhnat s
ing from the positive examples of a single haptic adjectiesf et sponee o e Sponie
given exploratory procedure and a given tactile sensorreélan -2 e e ial‘if“Pflfk"l“j;fiztt‘k.(il;,:l ”
Consequently, we trained 16 HMMs (four motions times four . g I
sensors) for each adjective. During feature extractioch &l 05 o e Pack
is associated with a 16-dimensional vector of log-proligess), White Fomn ¥ pons oo Liner
interpreted as a vector of dynamic features. o Bt Cloth Gy Foum
Koozie
5.3. Feature and Label Analysis 03 02 01 T 02 03 04 05

2nd Component, 14.7%

Before passing them into any machine learning algorithm,
we analyzed our static and dynamic features by looking aFigure 8: The first two principal components of the staticdeaispace; each
where our 60 objects lie in each feature space. This anaisis PHAC-2 object is shown at the average location occupieddyiéls.
lows us to determine whether the selected features comédspo

well to physical properties of the objects.

The static feature vector has 188 elementsx44), and its Bk e Gosmetics Box Cnerete
values do not depend on the adjective being considerednGive S e S B o ) R
the way the HMMs are trained, there is a distinct 16-elemen ’ T Cane S P st vie
dynamic feature vector for each adjective, so we chose a+epr R Toothpaste ff)f‘ o %mx
sentative adjectiven@rd) to report here. The features were first sap Dt 00 '\\\ g Bon
centered, normalized, and averaged across each of theal0 tri Colorul BIGk gy Lavered Cork o S Ol Container
per object, yielding 60 object-specific average featurdorec . .
for both the static and dynamic approaches. These average fe# ° TP ek Foam .

" . . g Charcoal Foam . Notepad

ture vectors were passed into PCA, and the top two principe: Pool Noodle. 8, 1:cnod Envelope '
components are shown in F[g. 8 (static) and Elg. 9 (dynamic)$ o o, Sikons Sl Plowee
In both cases, neighboring objects seem to share physimad pr— oes| «hcten sponge Q"M L B\f,m; wop elex Card Case
erties such as compliance and texture, giving us confidévate t e SP”F“FI Placemat
both approaches are producing valuable features. Notérelso BlweSpondt e, Pumby Foam eYellow Foam
the two spaces resemble one another but are not identieal; tl T Ptk o o ®CGray Foum
static and dynamic features capture somewh&tidint aspects o Cloth Sack
of the interactions. Bath Cloth

In parallel, we used correspondence analysis (CA) to inves Koozje  eWhite Foam
tigate the validity of the human adjective ratings. CA allow  os. :
one to understand the relationship between stimuli (foobs, 2 Componen. 1485

]ECtS) and descrlptors (for us, blnary haptIC adJeCtlvemfma- Figure 9: The first two principal components of the dynamicdemaspace for

jority vqting) within a dataset that is categorical, norg_aéve, the representative adjectiard, each PHAC-2 object is shown at the average
and uniformly scaled/ [34]. CA places both the objects andocation occupied by its trials.

the adjectives in a shared perceptual space where the cistan

between elements represents their perceived dissirgi[34{.

Figure[10 shows where each adjective and each object siin thately we see that all three top principal components seem to

first two dimensions yielded by CA. Examination of the plot correspond to compliance, a highly salient object properay

gives credibility to the human-provided adjective labelor  is fundamental to the adjectiverd. However, when we start to

example, we see that objects that eretallicandcoolsit close  look at the second component, it is moréidult to make a clear

together, and objects such as Loofah and Gray Eraser are neamrelation between the three feature spaces. While it iarapp

roughandscratchy ent that the adjective space’s second dimension relateb-to o
We can now compare the PCA plots of the static and dynamigect roughness, the second component of the two featurespac

data features with the CA plot of the adjective labels. Immed only slightly correlate with roughness, leading us to spegeu

9



Table 7: Metric Equations

Precision Recall F.
: ip ip . precision recall
tp+fp tp+fn precisiort recall

a reproducing kernel for the underlying Hilbert space. We ca
therefore construct a new merged kerkiglas:

Dimension 1, 18.9%

Km=aKs+ (1-—a)Ky 3)

-05

whereKs andKy are both linear kernels, andOa < 1. After
conceiving of this approach, we trained an SVM for each ad-
jective using cross-validation and grid search to find theaftg
factorC and the mixing coficienta. We call this multi-kernel
learning classifieMKL (see [36] for similar approaches.)

-15

-1
Dimension 2,14.3%

7. Results
Figure 10: The first two dimensions of the adjective-objeeicspcreated from
correspondence analysis (CA) All of the results reported below were obtained through-test
ing on the reserved adjective-specific test sets, which were
never seen during training, as described in Sedtioh 4.3. The
?raining and testing were performed on Linux-based PC com-
puters with Intel i7 processors with a single core speed of
3.8 GHz and total RAM of 16.0 GB. On these machines, a sin-
6. Training the Classifiers gle object exploration can be classified with all adjectiires
approximately 10 seconds. The metrics that we have selected
We trained classifiers to capture the static and dynamic@atu 5y precision, recall, ané score, as defined in Talle 7, where
of the data using the database of 90% training object splits f tp is the true positive count (the number of correct positéve
each adjective, holding back the 10% of objects designated f gy ts returned by the classifier), fp is false positives (teber

that our robot may not be able to feel this object property a
easily as humans can.

testing each adjective, as described in Se¢fioh 4.3. of results incorrectly labeled positive by the classifiand fn
. ] B is false negatives (the number of positive results missetthdy
6.1. Separate Static and Dynamic Classifiers classifier).

Given the static and dynamic features introduced in Sec- Table[8 provides a summary of the results averaged over all
tion[8, we trained two corresponding groups of 24 adjective-adjectives for each of the four classifiers introduced in-Sec
specific classifiers using each adjective’s designatediigiset  tion[g, plus two additional EP-specific classifiers discddse
(both positive and negative examples). Each classifier asedlow. Importantly, we have removed the contributions froice,
linear support-vector machine (SVM) with the L2 mettici[35] sticky, andunpleasantwhenever calculating the mean over all
We reserved 3 objects (30 feature vectors) from each trairadjectives because these labels have just one positivepéxam
ing set for use in validation. The F1 score of each classifiein the entire corpus. As explained in Secl4.3, the classifar
was calculated by averaging over 100 randomly selected valthese three adjectives were trained on half of the trialrosm
dation sets. We used cross-validation and grid search ¢atsel for their exemplar object and then tested on the other hatf; n
the SVM error penalty facto€, with values ranging from 70 urally, the machine learning algorithms overfit to thesecjue
to 1. This approach yielded 24 adjective-specific classifiersobjects and yielded test scores that do not accuratelysepte
based on the 188-dimensional static features (Sek. 5.124nd how well the classifiers generalize.
based on the 16-dimensional dynamic features (Sec. 5.2).

7.1. Exploratory Procedure Breakdown

6.2. Static+ Dynamic Classifiers We first looked at how classifiers trained on the features from
We explored two techniques for merging the static and dy-only an individual EP $queeze, Hold, Slow Slide, Fast Slide
namic feature information. For the first method, we simplyperformed across all of the adjectives. Each was trainetjusi
combined the static and dynamic features to create a 204he same methods described in $ed 6.1 but looking at only the
dimensional feature vector. We then trained a linear SVMaisi 47 static features or only the 4 dynamic features constilucte
the approach described in the section above. We call this clafrom the designated EP’s data. The results are shown in [Bable
sifier Combined The second approach merged the two kernelsand Tabld 10, with adjectives listed in decreasing ordehef t
rather than the feature vectors. Given a valid kernel for themumber of positive examples in the training set. When looking
static featureks and a valid kernel for the dynamic features at an individual phase, the static method generally perddret-
Ky, it is well known that a linear combination of the two is still ter than the dynamic method, presumably because it has more
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Table 10:F; Score Across Adjectives and EPs Using Only Dynamic Features
[ [ Squeeze[ Hold | Slow Slide | Fast Slide [[ PE* |

Table 8: Average scores for the developed adjective classifi

= o smooth 0.738 | 0.432 0.185 0.125 25
Cla§S|f|er _ Precision Recall Fy solid 0.836 | 0.815 0.681 0.750 22
Static, Individual EP 210 029 031 squishy 0.776 | 0.636 0.278 0.571 21
Dynamic, Individual EP 0 008 011 Comﬁgfjs'b'e 8-;22 g-;zg g-ggg gg?i 28
Static 048 051 047 foxtured 0.000 | 0.000 | 0.000 0.000 16
Dynamic 062 047 052 soft 0:667 | 0.182 0.083 0.000 13
. absorbent 0.788 | 0.000 0.000 0.000 9
Combined ®61 059 057 rough 0.000 | 0.000 | 0.000 0.000 9
MKL 0.79 076 Q77 thick 0.000 | 0.000 0.000 0.000 9
Note that each value reported here is the mean of the individoaes, so the Sl%;:elry 8'888 8'888 8'888 8'888 g
mathematical relat?onship between precisi_on, r_ecall,l%mdoes not fuzzy 0.000 | 0.000 0.000 0.000 5
necessarily follow the equation given in Table 7. pOToUS 0.000 0.000 0.000 0.000 5
o ] ) springy 0.000 | 0.000 0.000 0.000 6
Table 9:F1 Score Across Adjectives and EPs Using Only Static Features scratchy 0.000 0.000 0.000 0.000 5
[ [ Squeeze[ Hold | Slow Slide | Fast Slide [[ PE* | hairy 0.000 0.000 0.000 0.000 4
smooth 0.658 0.508 0.421 0.122 25 bumpy 0.000 0.000 0.000 0.000 2
solid 0.846 0.893 0.833 22 metallic 0.000 0.000 0.000 0.000 2
squishy 0.774 | 0.877 0.655 0.712 21 crinkly 0.000 | 0.000 0.000 0.000 1
compressible| 0.769 0.868 0.776 20 thin 0.000 0.000 0.000 1
hard 0.667 0.630 20 nice 0.000 0.000 0.5
textured 0.000 | 0.095 0.087 0.065 16 sticky 0.000 0.333 05
soft 0.744 | 0.378 0.500 0.564 13 unpleasant | 0.000 0.5
absorbent 0.667 0.529 0.850 0.600 9 *PE indicates the number of positive examples in the training set.
rough 0.000 | 0.182 0.706 0.571 9
thick 0.250 | 0.000 0.160 0.000 9
cool 0.250 | 0583 | 0.133 0.286 8 the remaining adjectives remain low, thus explaining itsral
slippery 0.167 | 0.000 0.000 0.222 8 | f h dto the d ic classifi
fuzzy 0000 T 0000 5,000 5,000 5 ower performance when compared to the dynamic classifier.
porous 0.696 | 0526 0.258 0.000 6
springy 0.235 0.000 0.250 0.091 6 7.3. Merged Classifiers
scratchy 0.000 | 0.000 0.000 0.000 5 . . -
hairy 0.000 | 0333 0250 0533 iy The results for the static and dynamic classifiers show that
bumpy 0.000 | 0.000 0.143 0.182 2 the two are complementary in their capabilities. We therefo
metallic 0.133 |1 01667 0.000 0.000 2 lassifier th h ) dd ic iaf.
crinkly 0000 1 0.000 0,000 0,000 T gxpect a classifier that merggst e_ stelltllc an yne_lmlc irform
thin 0.000 | 0.000 [ 0.000 0.000 1 tion to perform better than either individual classifier. Whe
nice 0.000 | 0.000 0.571 05 : .
Sticky 0000 0.000 0.000 0.000 0 we conduc_t_ed these experlm_e_nts, we discovered that only the
unpleasant | 0444 | 0.000 | 0615 05 MKL classifier showed a significant improvement over the in-

*PE indicates the number of positive examples in the training set. dividual approaches, as seen in the bottom two rows of Table 8
Figure[11 shows a side-by-side comparison of the adjective-
specific performance for the Combined and MKL classifiers.
The MKL classifier dominates the results, with an avergge
score of 0.77. Surprisingly, both classifiers failed to thetire
adjectivescratchy which was at least partially identifiable by
the dynamic classifier.

information available. Overall, using only a single EP $aib
do well at identifying adjectives when the number of positiv
examples falls below about 10. There are some interesting e
ceptions with the static method for adjectives suchaisy and
metallic that have EPs that do relatively well even with only
a small number of positive examples, seemingly because thf4. Humans

EP is particularly well suited to judging that adjectivelsac- To obtain a baseline by which to judge the robot's perfor-

acteristics. On the other end of the spectrum, there alsi exi vzed th Its of the h bi d
adjectives that do poorly even with a high number of po:sitive?ance’.We re-analyze the results 0 .t € human-su Jeq] st
examples, notabliexturedandsmooth y treatlng e_ach individual as a cI§35|f|er. Each partld_ipd_{m
nary predictions were scored against the human majorigi lab

and then aggregated across objects using the same precision
recall, andF; metrics used to quantify the robot’s performance.

We next looked at the performance of the full static and dy-Figure[I2 presents a box plot of tHs score per adjective for
namic classifiers, which consider data from all four EPsirthe all human subjects. The MKL classifier is overlaid on top d th
average scores are reported in the third and fourth rows-of Tdigure for a side-by-side comparison of robot and human per-
ble[8. Interestingly, these results show that the full dyitam formance. In general, the robot’s MKL classifier tends tareco
classifier achieves a somewhat higher overall score thamlthe closer to the majority labels than the average human, aicigjev
static classifier, reversing the trend found for individ&#s. an average, across all adjectives of. D7 versus the human
Figure[I1 shows the flerences between the scores for eachaverageF; score of 065.
of the 24 adjectives. The dynamic classifier completelysfail
to generalize fospringy, rough thick, textured fuzzyandslip-
pery, but these zero scores are largefiset by high scores for
the other adjectives. In contrast, the static classifiés faigen- The presented results show that adjective classifiersenain
eralize only forscratchy crinkly andthin, but the scores for on more heterogeneous data outperform classifiers trained o
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7.2. Static and Dynamic Classifiers

8. Discussion
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Figure 11: Comparisons of tHe scores between the Static and Dynamic classifiers (top rowviCambined and MKL classifiers (bottom row). The parenthética
numbers with the adjective labels are the number of positisengkes in the training set.
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Figure 12:F; score comparison between the robot’s MKL classifier and all 36

human subjects (when tested against the majority-votedtadjdabels). Each
box plot shows the second and third quartiles of the hufascores, the line
shows the median, the filled symbol shows the mean, the whiskers the
range up to 1.5 times the inter-quartile range, and dots matiesu

ture vector (either static or dynamic), explaining thfetence
between the low individual EP scores and the higher fulicstat
or dynamic scores seen in Tafle 8.

The BioTac sensorsfier a multi-modal view into the haptic
perceptual space, with information coming from motion spre
sure, temperature, shape, and vibration. Our experiméntg s
that our two feature extraction approaches behafieréntly
when trying to recognize fferent adjectives. Figufell1l shows
that some dynamic classifiers fail at recognizing adjestthat
the static classifiers otherwise can, and vice versa. The bes
choice is therefore unifying the two approaches to extngcti
information from the voluminous sensory data streams.

The Combined classifier’s results indeed prove this polnt, a
beit with an overalF; score (0567) that barely outperforms that
of the Dynamic classifier (62). A close look at Figuré—11
shows that, although most of the 0 scores have been raised,
crinkly andscratchystill have a 0 score even though their Dy-
namic classifier score was 1. Also adjectives tibgtured fuzzy
andslipperyhad low scores in both the dynamic and static clas-
sifiers, and this trend has been kept in the combined classifie
In contrast, the MKL classifier seems to have learned howeo us
the available data best, achieving an averagscore of 077,
which is better than the average human participant. A clese e

only a subset of the data when attempting to label objects thamination of the right part of the lower plot in Figure 11 stsow
have never before been touched. Although this result is nahat MKL learned to generalize better than the Combined clas

new in the machine-learning community, it has profound impl
cations in haptics and robotics in general.

The first source of heterogeneity comes from théedént

sifier when presented with a small number of positive example

The behavior of the MKL classifier can be further analyzed
by comparing the mixing factax with the scores of the Static

ways in which the robot physically explored the object. Whileand Dynamic classifiers, as shown in Figuré 13. According to

certain EP-specific static classifiers do reasonably weh ai
small number of positive examples, the scores are very low

equation[(B), the greateris, the greater is the weight assigned
to the static features. Adjectives likeiry, solid, absorbent

overall (Tableg D), and the EP-specific dynamic classifiers d@andcool have non-extreme values, indicating that both static
even worse. This trend shows that when a robot is learning thend dynamic features played an equal role in characteribimg

rich characteristics of an object, a single motion oftensdoat
yield enough useful information to be reliable at genenadjz
adjectives. The first jump in classification scores occurerwh
the information from all the motions is unified into a singbaf
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adjective. On the other side, adjectives liferousand thin
are chosen using only either the static or the dynamic kernel
choices that are consistent with the relative scores oftbert-
dividual classifiers. The adjectivaipperyandhard represent
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Figure 13: Mixing factorr for the MKL classifier in relation to the scores of the Staticd@ynamic classifiers. Aa value of 1 indicates only the Static kernel is
considered, while a value of 0 indicates that only the Dyndeaioel is considered.

an exception to this trend, where a greater weight is giveindo In this work we chose linear models for both feature ex-
kernel whose corresponding classifier performs worse. traction (linear PCA) and classification (linear kernel3he

The MKL approach is adept at combining the best of themain reason behind this choice is the substantial computaiti
static and dynamic feature sets, yielding better overallite ~ advantage linear models have over more complicated kernels
than either classifier alone. An interesting parallel exize- ~ This decision in turn drastically reduces the training tinteen
tween the MKL classifiers and humans: it is known that hu-searching in a large parameter space via cross-validatiba.
mans can judge object compliance using only tactile cues diesults in Tabl€}4 also support our choice, as most of the vari
only kinesthetic cues, with tactile cues being more uséfid).] ~ance in the sensors is captured by the first component of the
Like the robot combining static and dynamic features, humarP CA projection of the data.
performance at compliance discrimination is best when both
tactile and kinesthetic cues are available [37]. 9. Conclusion and Future Work

Overall, the responses of the average human matched the ma-

jority vote with a similar level of performance as the MKL 812 \yg set out to create a robotic system capable of touching ev-
sifier, validating that MKL is indeed learning the mapping be g¢rygay objects and describing them with haptic adjectiviés.
tween physical interaction signals and haptic adjectirefact,  nerformed an experiment to learn what words humans choose
the MKL classifier is somewhat better than the average humap, jescribe a large set of selected objects, and we collaejed
at predicting whether a new object will be voted as a positivgjc gata from a robot that touched these same objects ters time
adjective example, a result that substantiates the valomeittk  o5ch The richness of the signals collected from the BioTac
modal tactile sensing and heterogenous exploratory ptwwesd  sensors enabled us to perform a multi-modal analysis ofbbje
In examining the data for the single positive examples ofproperties. Based on prior robotics research and knowletige
nice, sticky, andunpleasantwe noticed that the PR2 was more human touch, our primary hypothesis was that characterizin
consistent than expected across trials. All of our developethe feel of everyday objects with the acuity of human percep-
classifiers could adeptly predict the labels for the witdhel tion requires information gathered fromfidirent kinds of in-
als, leading us to remove these scores from our aggregatésres teractions and diverse sensors. We therefore construciid b
to avoid bias. This finding suggests that future version$isf t - traditional static and novel dynamic features from the itapt
experiment probably do not require 10 robotic interactitals  data for use in learning the meaning of the haptic adjective |
for each object; approximately five trials would befatient. bels. We built classifiers of increasing sophistication ested
Considering all of the results, it was reassuring that adjecthem on previously unfelt objects. The results we have obthi
tives trained with more positive examples generally adtev are very encouraging, in that a multi-kernel classifiemigaion
a higherF; score during testing. A notable exception wasboth static and dynamic features performed better thanvtre a
with the adjectivaextured which had 16 positive examples but age human subject on the adjective labeling task. Theségesu
achieved arf; score of only 0.2. This discrepancy led us to could not be obtained by looking at one source of information
look more closely at all of the other texture-related adjest  alone. Our experiments therefore prove our initial hypsithe
which includesmooth rough fuzzy scratchy and possiblyab-  and pave the road for other new approaches to tactile informa
sorbent It seems that these adjectives generally did not perforntion analysis and classification.
as well as other adjectives that had a similar number ofitrgin There are many avenues available for future work. This re-
examples. These results support the findings from Selci®n 5search calculated a large number of static and dynamicriesatu
that texture was not the first or second principal componént ofrom the robot data; it would be useful to analyze which fea-
our feature space; it seems that our robot cannot feel exas  tures were most important for the learning of individualesdj
easily as humans can, most likely due to wear of the patternetives and for overall performance. It would also be inténgst
ridges on the BioTac skins. to apply a Bayesian selection approach similar to that dgne b
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Fishel and Loek [18] to choose the best exploratory proadur learning techniques for robotic learning in unstructuresie
for discriminating each adjective. This approach shouldkwo ronments.
well because our static classifier seemed to do best when the
EP matched the characteristics of the adjective; as seea-in T
ble[d, bothcool andmetallichad the best results witHold, the
EP that provides the most information about the object’s-the
mal properties, while bothairy androughfavored sliding EPs,
which we would expect to capture the most information about
texture.

This research did not focus on dexterous object interaction
but rather used a parallel-jaw gripper to perform EP’s. T pr =i
vide similar tactile experiences, we required the human sublan McMahon received his B.S. degree in Computer Engineer-
jects to emulate the capabilities of the robot’s two-fingaggp-  ing from the Pennsylvania State University in 2009 and his
per. It would be interesting to reverse this paradigm andhavM.S.E. degree in Robotics from the University of Pennsylva-
the humans interact with objects freely, lifting and slglitne ~ nia in 2012. During his masters degree, he worked in Katkerin
objects as they desired. One could then investigate a multkuchenbecker's Haptics Research Group in the GRASP Lab.
fingered BioTac-enhanced robotic hand capable of perfarminHis research interests include haptic sensing and compister
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the other EP’s described by Lederman and Klatzky [11].
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