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Abstract

To perform useful tasks in everyday human environments, robots must be able to both understand and communicate the sensations
they experience during haptic interactions with objects. Toward this goal, we augmented the Willow Garage PR2 robot with a pair
of SynTouch BioTac sensors to capture rich tactile signals during the execution of four exploratory procedures on 60 household
objects. In a parallel experiment, human subjects blindly touched the same objects and selected binary haptic adjectives from a
predetermined set of 25 labels. We developed several machine-learning algorithms to discover the meaning of each adjective from
the robot’s sensory data. The most successful algorithms were those that intelligently combine static and dynamic components of
the data recorded during all four exploratory procedures. The best of our approaches produced an average adjective classification
F1 score of 0.77, a score higher than that of an average human subject.
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1. Introduction

1.1. Motivation

Manipulation of objects in the real world is a task that goes
beyond locating and grasping items of interest. Objects have
material properties that need to be properly identified before
one can reliably handle them. For example, it is well known
that a human attempting to lift an object off a table adjusts his
or her grip force and subsequent hand movements based on the
coefficient of static friction between their fingertips and the sur-
faces of the object [1]. Practically speaking, slippery objects
need to be grasped more firmly and must be moved less aggres-
sively than sticky objects. When executing a manipulation plan,
humans continually predict the tactile signals they will feel and
compare their predictions with the actual sensations that oc-
cur to monitor their progress and correct any mistakes [2]. To
achieve the envisioned benefits of robotic manipulation in hu-
man environments [3], robots must develop a similar level of
mastery over physical interaction with unknown objects.

Beyond the necessary skill of manipulating everyday objects,
robot helpers must also be able to interact smoothly with hu-
mans who have little or no technical training. Natural language
is likely to be a comfortable communication modality for a wide
range of potential users [4, 5, 6]. Like human children, robots
will need to be able to learn new words and concepts through
direct observation of and interaction with the world. The task of
perceptually-grounded language learning requires one to gener-
alize from a small number of examples to deduce the underly-
ing pattern that captures the meaning of the word being learned.

1These authors contributed equally to this work

Figure 1: A PR2 robot prepares to touch a car-washing sponge using two Bio-
Tac sensors installed in its left hand.

Given the opportunity for robots to function as helpers, we are
particularly motivated by the task of learning to describe how
objects feel to touch, a challenging undertaking that requires
clever physical interaction, rich haptic sensing, and robust ma-
chine learning techniques.

One valuable immediate application of a robot that can ver-
bally describe what it feels would be to provide automated and
standardized descriptions of physical products such as cloth-
ing, stationery, and hand-held electronics. In the age of Internet
shopping, online consumers frequently purchase things with-
out knowing what they will feel like to touch. Consumers are
less likely to purchase products in this situation, particularly
products that have a strong tactile component [7]. One way to
address this issue is to provide consumers with scores from in-
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dustry experts who have rated these objects using metrics such
as KES-FB and FAST [8], which attempt to quantify the tac-
tile properties that people prefer. These metrics are designed
for internal product reviews and are not as useful for the aver-
age consumer as a detailed and unbiased verbal description of
the product’s feel. Such a system would allow consumers to
search directly for the haptic adjectives they would like a prod-
uct to have, such assoft, smooth, andnice. Ideally, these labels
could be learned automatically from direct physical examples
and applied to new products in an impartial manner, a task that
is perfect for robotic technology. Haptic adjective descriptions
have previously been explored in humans [9], but the use of a
robot to perform this task is largely novel.

To investigate the feasibility of robotic learning of haptic
adjectives through physical interaction, we created the system
pictured in Fig. 1. We sought to enable the depicted robot
to autonomously explore objects with its sensorized fingertips
and report back an appropriate set of descriptive haptic adjec-
tives. This goal was accomplished by conducting and analyzing
two experiments: one in which the robot felt a wide variety of
household objects, and another to discover which haptic adjec-
tives humans used to describe these same objects. We devel-
oped new methods for processing the heterogeneous and multi-
modal time-varying information generated by each interaction,
and we tested several different techniques for learning the as-
sociations between the robot’s haptic signals and the human-
generated haptic adjective labels.

1.2. Related Work
Humans are capable of haptically recognizing familiar three-

dimensional objects through direct contact in just one or two
seconds with near 100% accuracy [10]. Individuals accomplish
this impressive feat by taking advantage of a rich array of tac-
tile and kinesthetic cues including contact location, pressure,
stretch, vibration, temperature, finger position, finger velocity,
and muscle force [10, 2]. We similarly believe that tactile cues
are essential to enabling a robot to acquire language and exe-
cute manual tasks with high accuracy. Furthermore, the sense of
touch is inherently interactive – how you move your hand sig-
nificantly affects the tactile sensations you feel. Interestingly,
humans adopt consistent “exploratory procedures” (EPs) when
asked to make judgments about specific object properties [11].
For example, the EP of lateral fingertip motion reveals surface
texture, pressing shows its hardness, and static contact discloses
temperature and thermal conductivity. We believe robots need a
corresponding set of exploratory procedures to best interrogate
the objects they encounter.

Many robotics researchers have leveraged insights about the
human sense of touch to improve robotic manipulation. Early
work by Okamura et al. [12] presented robot fingers that roll
and slide over the surface of an object to determine texture,
ridges, and grooves. Romano et al. [13] imitated human tactile
sensing channels and reactions to enable a robot with simple
tactile sensors (Willow Garage PR2) to pick up, move around,
and set down unknown objects without dropping or crushing
them. In a more perception-focused effort, Chitta et al. [14]
used the same robot to deduce the identity and contents of

a set of beverage containers through touch alone. For the
similar task of discriminating containers from non-containers,
Griffith et al. [15] demonstrated that the best classification re-
sults are achieved when the robot executes a large number
of interactions on the target object while attending to diverse
sources of sensory data including sight, sound, and touch. Sim-
ilarly, Sinapov et al. [16] had a custom robot equipped with a
vibration-sensitive fingernail use various scratching motions to
recognize and categorize everyday textures, with the best re-
sults coming from the use of several motions [16]. Oddo et al.
used a different novel tactile sensor to achieve good accuracy
in discriminating surface roughness [17]. More recently, Fishel
and Loeb used a novel biomimetic sensor (SynTouch BioTac)
to interact with a library of 117 everyday textures, achieving
95.4% accuracy in identification through the use of cleverlyse-
lected tactile features and Bayesian techniques for choosing the
most useful movements to perform [18]. Other valuable work
on the robotic use of tactile sensors also tends to focus on recog-
nizing particular object instances [19, 20], a task that is related
to but distinct from our goal of learning haptic adjectives.

The specific task of quantifying tactile sensations has been
explored in the domain of product evaluation for items such
as fabric [8] and skin cream [21]. To aid researchers in inter-
preting the results of opinion studies, there have been a fewat-
tempts to develop custom systems to quantify these sensations
using machine-learning techniques, e.g, [22, 8]. However,these
past approaches have typically used single sensor inputs, which
cannot match the richness of human tactile sensation. More re-
cently, Shao et al. showed that accurately evaluating the feel of
different packaging materials requires many different channels
of touch perception [23]. The need for multi-modal sensing to
automatically identify different textures was also noted in the
work by Fishel and Loeb [18].

Since the data from haptic sensors usually streams over time,
time-series analysis has often been employed to extract infor-
mation from signals recorded during physical interactions. For
example, haptic signals collected from an artificial skin over
a robot’s entire body were successfully clustered and catego-
rized into human-robot interaction modalities [24]. Similarly,
a robot learned to segment tasks by classifying time-seriesdata
obtained from an accelerometer and a camera [25]. Our own
analysis of time-series data is based on and draws upon the lit-
erature in speech recognition, most notably the use of Hidden
Markov Models [26].

1.3. Relation to Previous Research

This article builds on preliminary research we published asa
short workshop paper [27] and a conference paper [28]. The re-
search reported here significantly extends and refines our prior
work, particularly by including more objects, running a for-
mal human-subject study to obtain adjective labels, intelligently
merging the traditional approach to feature extraction with our
novel HMM-based approach, rigorously and consistently eval-
uating classifier performance, and thoroughly interpreting all
results.
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Figure 2: The 60 objects included in the Penn Haptic Adjective Corpus 2, organized by their primary material. Many are household items, and the rest are made
from raw materials. Some objects were folded, layered, and/or cut to meet the size and stability requirements for robotic interaction.

2. Materials

2.1. Robotic Hardware

To best emulate what humans experience when exploring ob-
jects, we mounted state-of-the-art sensors capable of detecting a
wide array of tactile signals onto a humanoid-robotic platform.
Specifically, we developed a method to custom-install two Syn-
touch BioTacs (biomimetic tactile sensors) in the gripper of a
Willow Garage PR2 (Personal Robot 2). The modification was
successfully performed on PR2s at both Penn and UC Berkeley.
Full details on the integration and the software interface pack-
ages can be found in our previous work [28] as well as on our
project website [29]. The source code for all the approaches
described in this paper, including the code to interface with the
PR2 and the Syntouch sensors, is available online2.

The PR2 has two 7-degree-of-freedom (7-DoF) arms that
each terminate with a 1-DoF parallel jaw gripper. One Bio-
Tac is attached to the distal end of each finger of the left gripper
to allow the robot to experience rich tactile sensations as it en-
closes, squeezes, and strokes objects. The setup can be seen
in Fig. 1. Each human-fingertip-sized BioTac is comprised of
a rigid core surrounded by conductive fluid within a flexible
silicone skin [18]. The BioTac provides measurements of low-
frequency fluid pressure (PDC), high-frequency fluid vibrations
(PAC), core temperature (TDC), core temperature change (TAC),
and a set of nineteen electrode impedances (E1 . . .E19) spatially
distributed across its heated core. Data is read from both fingers
at 100 Hz; each packet includes 22PAC readings and one read-
ing of each other type.

2.2. Objects

The enhanced PR2 interacted with 60 objects that represent a
wide range of physical properties within the limits of what the
robot can grasp. As seen in Fig. 2, each object is able to stand
upright on a table and has two flat, parallel, vertical sides with
identical surface properties. To fit between the BioTacs, each
object is between 1.5 cm and 8 cm thick. To allow the PR2
to slide vertically down the object without colliding with the
table, the objects have a minimum height of 10 cm. No objects

2https://github.com/imcmahon01/Penn-haptics-bolt

are sharp, pointed, cold, or hot to avoid damaging the BioTacs.
Furthermore, all included objects are clean, dry, and durable to
prevent damage to the system’s electronics and to maintain a
consistent feel over time.

3. Experimental Setup

To understand and generalize the experience of touching ob-
jects, we need knowledge of both how an object feels and how
to describe those sensations. A touch-sensitive robot can show
us precisely through bits and bytes what it has sensed, but ithas
no means to describe what impression the experience has made.
On the other hand, humans can describe their perception of an
object in words, but they cannot precisely share what they felt.

We developed two parallel experiments to capture the infor-
mation necessary to learn the meaning of a representative set of
haptic adjectives. Both the augmented PR2 robot and a group
of human subjects touched the 60 objects shown in Fig. 2 un-
der carefully controlled conditions that included no visual feed-
back, no auditory feedback, and no prior knowledge of the ob-
jects. As described below, the two experiments were designed
to give the robot and the human subjects as similar an experi-
ence as possible.

3.1. Robotic Exploration

For the PR2 to interact with the objects, we programmed a
custom controller in ROS (Robot Operating System) to perform
a fixed set of exploratory movements. As described in [28], the
controller is fully integrated with ROS tabletop object detec-
tion and can use motion-planning algorithms to autonomously
place the robot gripper around the object. However, to speed
up data collection, we programmed the robot to move its open
gripper to a fixed point above the table. The target object was
then placed on the table within the gripper with a small random
perturbation in pose designed to mimic the uncertainty of au-
tonomous object perception. This process is necessary onlyfor
rapid data acquisition, and the tabletop object detection pipeline
can be used for the general case when the object position and
shape are unknown. Moreover, as introduced in [28], the con-
troller has an initial probing phase where it adjusts the gripper
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position so that the object is centered between the fingers. Be-
cause all of the tested objects have parallel sides, the robot’s
two fingers contact the object equally.

Once the gripper is around the object, the PR2 begins
the following sequence of four Exploratory Procedures (EPs):
Squeeze, Hold, Slow Slide, andFast Slide. We designed these
EPs to match a subset of the archetypal movements humans
make when touching objects to discern their haptic proper-
ties [11]. The human EPs of Pressure, Enclosure, Static Con-
tact, and Lateral Motion were selected from Lederman and
Klatzky’s full list [11] because they can be reliably executed
by our two-fingered robot. For the robotic EPs based on Lateral
Motion, we also drew inspiration from Fishel and Loeb’s work
on using a BioTac for texture recognition [18]. A full descrip-
tion of each EP can be found in [28].

Before the robot begins executing the EPs, it performs aCen-
ter action to equalize the contact pressure between the two Bio-
Tacs. For this step, the PR2 repeatedly closes its gripper until
it feels contact, opens, and moves its gripper a small amount
toward the finger that first touched the object. This state ends
when both fingers contact the object at approximately the same
time. The PR2 then performs a high velocityTapto confirm the
centered location of the object. Although we previously iden-
tified it as an EP, here we omit data from this very briefTap
interaction because it yields little unique information about the
object and was not based on a human exploratory procedure.
The gripper opens by a small amount whenTapcompletes.

The first EP,Squeeze, was designed to match the human EP
of Pressure, which is used to discern object hardness [11]. Here,
the gripper closes at a constant slow velocity to a specificPDC

value before opening at the same constant velocity until no con-
tact is felt on either finger. The controller then transitions to
Hold, which was designed to correspond to the human EPs of
Enclosure (global shape and volume) and Static Contact (tem-
perature) [11]. After closing to a proportion of the full depth
reached during the previous state, the robot gently holds the
object for ten seconds to let the heated fingers reach thermal
equilibrium with the object, which begins at room tempera-
ture. The final two EPs have the robot move its hand down-
wards while lightly holding the object, creating sliding interac-
tions that match the human EP of Lateral Motion [11]. Similar
to [18], Slow Slideuses a stronger contact with a downward
speed of 1 cm/s, whileFast Slidehas half the contact strength
and a speed of 2.5 cm/s.

This whole procedure was performed ten times on each of
the 60 objects, with slight repositionings each time, resulting
in 600 robotic data collection trials. Each robotic trial took ap-
proximately 90 seconds to complete. As done for our prelimi-
nary dataset of 510 trials [28], these results were saved as ROS
“bagfiles” that contain time histories of many PR2 sensors. The
work reported in this paper uses only the PR2 gripper position,
the PR2 gripper aperture, all readings from both BioTac sen-
sors, and the timing of the controller’s states and sub-states.

3.2. Human Subject Study
To understand how people describe their haptic interactions

with the same set of 60 objects, we conducted an experiment
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Figure 3: The 25 adjectives selected for both the humans and the robot to use
in describing each object. Each adjective’s text is stylized here to convey its
meaning, but they were all presented to the human subjects in a standard font.
“Gritty” is marked with an asterisk because the human subjectsdid not agree
on a single positive example of this adjective, so it is omittedfrom further
discussion in this paper.

with thirty-six human subjects. All procedures were approved
by the University of Pennsylvania’s Institutional Review Board
under protocol #816464. Subjects gave informed consent and
were compensated $15 for participation.

The primary objective of this study was to obtain human-
verified labels of a range of haptic adjectives for each of theob-
jects in our corpus. Our preliminary work on this project [28]
tested a list of 34 adjectives in a pilot study that included only
four participants. Analysis of the responses given by thesesub-
jects showed that certain adjectives in this list were not being
used at all, while others were highly correlated with one an-
other. The irrelevant and redundant adjectives were removed to
yield the list of 25 haptic adjectives shown in Figure 3.

The study participants consisted of 34 right-handed and 2
left-handed individuals, 10 male and 26 female, ranging in age
from 18 to 21 years. All were college students with normal
upper-limb motion and hand function. During the experiment,
the subject was seated at a table in front of a vertical panel.The
subject could reach around the panel but could not see their
hand or the object. Each object was held in the air by a ring
stand to prevent the participant from touching the table, which
might have served as a tactile reference. This restriction also
beneficially averted the human tendency to lift and move the
object, which was prohibited because the augmented PR2 is not
capable of lifting all of the selected objects. A three-partsurvey
was presented on a computer display visible to the subject. All
participant responses were provided verbally and recordedby
the experimenters and a video camera. During the experiment,
the subject wore noise-cancellation headphones playing white
noise to hide sounds produced by interactions with the objects
as well as ambient noises. These headphones were also used to
communicate verbally with the subject throughout experiment.

Subjects were instructed to use only their index finger and
thumb to interact with the presented objects. Four exploratory
procedures were allowed: pressure, enclosure, static contact,
and lateral movement. In order to mimic the robot’s interactions
with the objects, subjects were not allowed to scratch, lift, twist,
or perform any other action on the object. They were also told
to avoid contact with the object’s edges and adjacent surfaces.

Every participant was presented twice with 20 objects, which
were evenly chosen from the 60 objects in the corpus. Each
object was thus touched by approximately twelve individu-
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Figure 4: These haptic signals were collected from one trialof the PR2 robot exploring the Blue Sponge object shown in Fig. 1. The recording is automatically
segmented into the exploratory procedure phases using the robot controller states. All BioTac sensor reading are in numerical units of the twelve-bit ADC. These
BioTac signals are centered at zero during non-contact, with the exception of the temperature signal,TDC.

als. During the first randomly ordered presentation, the subject
commented freely on the feel of each object. This step served
to familiarize the individual with the range of objects and the
testing procedure. We had the subject touch a compliant stress
ball between trials to attempt to wash out their tactile memory
of the previous object. The second randomly ordered presen-
tation of the objects involved both binary and Likert ratings of
pre-determined haptic adjectives. A randomly ordered listof
the 25 haptic adjectives shown in Fig. 3 was first shown on the
screen, and the participant selected the words they considered
characteristic of the object. There was no minimum or maxi-
mum number of adjectives to be selected. Immediately follow-
ing this verbal checklist, the subject rated the same objecton ten
basic haptic adjectives using a five-point Likert scale. This fi-
nal step was included to test hypotheses about specific antonym
relationships among common haptic adjectives and is thus not
considered in this paper.

3.3. Penn Haptic Adjective Corpus 2

Together, the results of both experiments constitute the Penn
Haptic Adjective Corpus 2 (PHAC-2). This corpus contains
all data from the 600 trials collected during the robot exper-
iment as well as all of the labels collected during the human
subject study. PHAC-2 is a significant improvement over the
original Penn Haptic Adjective Corpus 1 (PHAC-1) because it
includes nine more objects and three times as many human-
provided labels per object. Furthermore, the PHAC-2 adjective
labels are likely to be higher quality than those in PHAC-1 be-
cause they were collected with more standardized procedures
involving subjects who were completely naive to the research.

4. Experimental Data

4.1. Robot

We extracted several relevant haptic signals from the bagfiles
recorded during the robot’s interactions with the 60 PHAC-2
objects. Figure 4 displays the PR2 and BioTac data from a sin-
gle interaction with the object Blue Sponge. Coming from the
robot, the signalXg shows the gripper aperture (distance be-
tween the fingertips), where a reading of 0.1 m means the grip-
per is completely open.Zt f is the vertical position of the gripper
with respect to the robot’s torso coordinate frame. The addi-
tional five sets of signals were gathered from the BioTac sensors
themselves. Each of the pressure (PDC, PAC) and temperature
(TDC, TAC) graphs contains both left finger (light signal) and
right finger (dark signal) readings. The nineteen spatiallydis-
tributed electrodes in each finger are presented separatelyto aid
interpretation.

Before the robot’s fingers have come into contact with any
object, we calculate and store the mean of every BioTac sig-
nal except core temperature,TDC. These means are subtracted
from subsequent measurements in that run to mitigate sensor
drift and discrepancies between the two BioTacs. These zeroed
signals are made available to the machine learning pipelinein
addition to the unmodified versions of the signals. During a
trial, each EP’s signal is automatically segmented to include
only the portion of the movement containing physical interac-
tion with the object (highlighted in Figure 4). The durationof
the reduced signal varies by movement and by object. These in-
teresting controller subsections are passed to the machinelearn-
ing pipeline for feature extraction.

4.2. Human

Each of the 36 individuals who participated in the human
subject study provided 25 binary adjective ratings for eachof
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Figure 5: The number of objects that subjects identified as positive examples
for each of the 25 adjectives. The colored levels indicate the proportion of the
subjects choosing a given object for a given adjective. For example, only one
of the sixty objects (Kitchen Sponge) was labeledabsorbentby more than 90%
of the subjects who touched it, but 28 total objects were labeled absorbentby
at least one subject. We selected a threshold of 50% to provide the ground-
truth haptic adjective labels for the sixty objects. The adjectives are arranged in
decreasing order of positive examples, as determined by the 50% majority.

the 20 objects they touched, yielding a total of about 12 human
interactions per object. In this data set, a rating of 1 signifies
that the subject thought the object exhibited the qualitiesof the
given adjective. For instance, subject 17 said the Blue Sponge
wasspringy, soft, squishy, andthick, rating all of the other ad-
jectives a binary 0 for this object. The number of adjectives
selected for a given object varied from subject to subject and
also from object to object within the same subject; the mini-
mum was 0, the maximum was 11, and the median was 5.

Fig. 5 shows the number of objects that subjects selected as
being characteristic of each adjective, with a breakdown ofthe
percent agreement. Given these binary vote counts, we had to
devise a uniform method of choosing an overall binary label
for a given object-adjective pair. The human votes were tallied
and then normalized by the total number of individuals who
felt that object. If more than 50% of the human subjects labeled
an object-adjective pair positive, the overall majority vote was
labeled positive. Under this paradigm, the Blue Sponge shown
in Fig. 1 was labeledabsorbent, compressible, soft, andsquishy.
Interestingly, the adjectivegritty was not applied to any object
by more than 50% of the human subjects, so it was omitted from
consideration for robotic adjective learning. Furthermore, three
other adjectives (nice, sticky, and unpleasant) were found to
apply to only one object each (Applicator Pad, Silicone Block,
and Coco Liner, respectively), leaving no opportunity for the
robot to learn to generalize the meaning of these words within
this set of objects.

4.3. Train and Test Sets

All of the selected robot interaction data and all of the
majority-vote haptic adjective labels were combined into a
database for use by our machine learning algorithms. To al-
low us to not only train our algorithms but also test their per-
formance on new interaction data, we devised a method for di-

viding the collected database into train and test sets. We aim
to create a separate binary classifier for each of the adjectives
listed in Figure 3, so we needed twenty-four different train/test
splits (omittinggritty, which did not apply to any object). Each
of these train/test sets contains all 60 objects, since any given
object was labeled as either a positive or negative example of
each adjective by the majority vote.

Each adjective’s split between training and testing examples
was based on the positive and negative majority-vote labels.
These splits were constructed by gathering at least 10% of all
positively labeled and at least 10% of all negatively labeled
objects into the testing set for each adjective. The remaining
∼90% of positive and negative objects were placed into the
training set. Notice that all 10 runs of a given object were kept
on the same side of the train/test split to avoid fitting classifiers
to an object rather than the underlying adjective. The number
of objects in each testing set can be determined by evaluating
the following equation twice, once for all positive examples and
once for all negative examples:

Ntest= ⌈0.1 · γ⌉ (1)

whereγ is the total number of positive or negative examples for
this particular adjective. After the size of each set was deter-
mined, the members of each set were randomly selected without
replacement from the available options. This procedure guaran-
tees the presence of at least one positive and at least one neg-
ative example in the testing set for every adjective. To givea
concrete example of our method for choosing train/test splits,
consider the adjectiveabsorbent, which has 11 positive object
examples and 49 negative object examples. Equation (1) yields
a test set containing 2 positiveabsorbentobject examples and
5 negative examples. The remaining 9 positive objects and 44
negative objects form the training set.

We set up a special case to handle the three adjectives that
have only one positive object example:nice, stickyandunpleas-
ant. Since it was impossible to create whole positive training
and testing sets, we split these objects by trial. Five randomly
selected trials for the adjective’s positive object were designated
for the training set and five for testing.

5. Features

While the human adjective labels are simple to comprehend,
the robot recorded a voluminous quantity of diverse data during
each of its 600 trials, as exhibited in Fig. 4. Thus, we had to find
good ways to select a small number of numerical values (fea-
tures) to represent each channel and EP of the interaction for
use in our machine learning algorithms. We approached feature
selection from the two complementary viewpoints of (1) cal-
culating static values using hand-crafted formulas and (2)com-
puting novel dynamic values using automatic signal processing.

Investigation of both types of features is well motivated by
the fact that humans attend to and combine a variety of sensory
cues when judging the haptic properties of objects [11]. For
example, Tan et al. conducted a clever set of experiments to de-
termine whether subjects touching virtual objects throughrigid
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Table 1:PDC Feature Equations

Maximum Mean Greatest Slope Change
max(PDC) 1

n

∑n
i=1(PDC) max([P′DC(n) − P′DC(n− 1)])

plates base their estimates of compliance on the actual com-
pliance of the surface, the terminal force felt during the inter-
action, and/or the mechanical work done by their fingers [30].
The precise mechanisms of human haptic perception are not
known for all possible object properties, nor do we assume that
the augmented PR2’s sensory capabilities are perfectly matched
to those of a human, so we sought to create a wide variety of
potentially useful features. Our static method follows previ-
ous research on robotic texture categorization such as Fishel
and Loeb [18] and Sinapov et al. [16], where features are care-
fully designed based on knowledge of human and robotic touch
to capture salient characteristics of the signal. Our dynamic
method takes a very different approach and aims to model the
way the entire haptic signal changes over time.

5.1. Static Feature Calculation

Our static method calculates single-valued features from the
robot’s tactile and kinesthetic sensations; as discussed in Sec-
tion 4.1, all BioTac signals exceptTDC are zeroed at the start of
each trial. Features are then extracted from the most relevant
time segments of the four EPs:Squeeze, Hold, Slow Slide, and
Fast Slide. The selected segments are highlighted in Figure 4.
Each of the features described below is calculated for each Bio-
Tac for each of the four EPs. This segmentation by EP allows
us to analyze the impact of each EP on learning a particular ad-
jective and also ensures that each EP has equal representation
in the input.

Low-Frequency Fluid Pressure (PDC). The first two features
are the maximum and mean ofPDC during the EP segment,
chosen to capture the finger’s internal pressure change. The
third feature finds the greatest change in a smoothed version
of the PDC signal’s slope over time. The equations for these
three features are shown in Table 1. These static features were
selected because of the noticeable difference inPDC signal size
and shape between stiff and compliant objects.

High-Frequency Fluid Vibrations (PAC). Recent work by
Fishel and Loeb showed that frequency-domain analyses of
BioTac contact vibrations are very successful for texture classi-
fication tasks [18]. To obtain our features, we first converted the
2200 HzPAC temporal vibration signal into a non-normalized
energy spectral density,ESD, whereω is the vector of frequen-
cies, as follows:

ESD(ω) =
1
2π

∣

∣

∣

∣

∫ ∞

−∞

f (t)e−iωt dt

∣

∣

∣

∣

2

=
1
2π

F(ω)F∗(ω) (2)

To represent theESDvia single-valued features, we computed
the total energy of theESD curve, plus the spectral centroid
(SC), variance (SV), skewness (SS), and kurtosis (SK) usingthe
equations shown in Table 2. A specific run of the two sliding

Table 2:PAC Feature Equations

Feature Equation

Etotal
ωmax−ωmin

2N

N
∑

k=1

[ESD(ωk) + ESD(ωk+1)]

SC
∑

ESD(ω)·ω∑
ESD(ω)

S V
∑

ESD(ω)·(ω−SC)2
∑

ESD(ω)

S S
∑

ESD(ω)·(ω−SC)3

S V
3
2 ·
∑

ESD(ω)

S K
∑

ESD(ω)·(ω−S V)4

S V2·
∑

ESD(ω) − 3

Figure 6: Features created from the rawPAC signals from bothSlow Slideand
Fast Slidefrom an exploration of the object Car Sponge. (a) and (b) show
the raw signals from a single BioTac. (c) and (d) show the conversion to the
frequency domain and the values pulled out for each of the five features.

EPs can be seen converted from rawPAC to the selected static
features in Figure 6.

Core Temperature (TDC) & Core Temperature Change (TAC).
The BioTacs are internally heated to above human body tem-
perature, so they transfer heat to any room-temperature surfaces
they come into contact with. We referred to work by Lin et
al. [31] for guidance on processing the temperature channels
of the BioTacs; their investigations showed thatTDC andTAC

can capture the thermal conductance of different materials. The
rate at which the heat is transferred varies between objectsof
different material and geometry. We capture this transfer rate
by calculating the total area under theTAC curve and the time
constantτ of an exponential fit ofTDC over time. The equations
for these static features can be found in Table 3.

Electrode Impedances (E1...E19). The BioTac’s 19 electrodes
give spatial information about the contact between the finger
and the objects. Because the electrodes are all connected tothe
same volume of conductive fluid inside the finger, we found
that many of the electrode signals are highly correlated with
one another. We used this knowledge to lower the dimension-
ality of the 19 electrodes to the two most significant principal
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Table 3: Thermal Feature Equations

Area UnderTAC TDC Curve Profile

tmax−tmin
2N

N−1
∑

k=1

[TAC(tk) + TAC(tk+1)] p1 + p2 e−
t
τ

Table 4: EP-based PCA Variance for the 19 Electrodes
EP First Component Second Component

Squeeze 91.7% 3.4%
Hold 91.7% 3.2%

Slow Slide 79.7% 11.3%
Fast Slide 84.7% 6.9%

Table 5: Robot Feature Equations

Max. Aperture Min. Aperture Height Range
max(Xg) min(Xg) max(Zt f ) − min(Zt f )

components using Principal Component Analysis (PCA) [32].
PCA was performed separately on the 19 channels of data from
each EP to capture the unique characteristics of each type of
interaction. The top two components were found to capture
the majority of the variance, as can be seen in Table 4. Once
the 19 electrodes have been reduced to their two highest prin-
cipal components, we fit a fifth-order polynomial to each com-
ponent’s coefficient over time. The 12 coefficients of the two
polynomial equations are our static features for the electrodes.

Robot Channels.The first two features that depend directly on
the robot’s movement are the maximum and minimum of the
PR2’s gripper aperture (Xg) during the selected EP, values that
change dramatically with object thickness and compliance.The
third static feature based on robot motion is the range of the
gripper’s vertical position (Zt f ). This feature was selected to
capture the amount of friction between the BioTacs and the
object, since the robot hand tracks its desired position more
closely when the object is slippery. The corresponding equa-
tions are shown in Table 5.

These methods give us 47 static features per EP per trial, broken
down as 22 for each BioTac and three from the PR2.

5.2. Dynamic Feature Calculation

Our dynamic features seek to encapsulate how the robot’s
tactile sensing signals change over time. Here we consider the
PDC, PAC, TAC, and E1 . . .E19 BioTac readings over all four
EPs, omittingTDC, Xg, andZt f because they largely correlate
with the chosen tactile readings. As done in our prior work [28],
we used Hidden Markov Models (HMMs) [26] to capture the
variations in the data. Since HMMs rely on an alphabet of finite
symbols, the first step was to create an adaptive discretization
pipeline that converts the raw haptic signals into symbols.The
following three-step pre-processing pipeline takes as inputs the
signals coming from both fingers as ann× d matrix, wheren is
the number of time steps in the recording andd is the number
of channels for a given sensor times two fingers.

Time Step

Resampled Time Step

Figure 7: An example of the vector quantization produced by the HMM
pipeline. The upper graph shows the signals of twoPAC sensors on the right and
left fingers. The lower graph represents the corresponding symbols produced
by vector quantization. This example used only 4 of the available 5 symbols in
the alphabet.

1. PCA: Principal Component Analysis [32] reduces the di-
mensionality of the input data while retaining a percent-
age of the variance. We calculated the minimum number
of new dimensionsr such that 97% of the input’s variance
was retained. Our experiments revealed that even for the
36-dimensional vector corresponding to the two fingers’
electrodes, as few as 4 dimensions were sufficient to rep-
resent the data. The output of PCA is an× r matrix.

2. Resample: An HMM calculates the probability of observ-
ing a sequence of symbols. This product of probabili-
ties becomes lower as the length of the input sequence in-
creases. To avoid numerical instability and over-fitting, we
resampled the PCA data to anm≪ n dimensional vector
using linear interpolation. The output is anm× r matrix.

3. Discretization: Once an input signal is reduced in dimen-
sions, we use vector quantization [33] to convert it to dis-
crete symbols drawn from ans-sized alphabet. In other
words, we treated them× r input matrix asm independent
r-dimensional vectors and performed K-Means to identify
sclusters. The output is am-dimensional vector of discrete
elements.

Figure 7 shows the effects of the above pipeline on a sample
pair of PAC signals recorded when the robot performedSlow
Slideon the Art Notebook. The output is a 20-dimensional vec-
tor of discrete symbols drawn from an alphabet of cardinality 5.
Only 4 of the 5 available symbols were used by this particular
time series. Whenever a significant change happens in the input
data, there is a corresponding change of symbol. The pipeline
is otherwise very robust to noise.

Training the HMMs. We train our HMMs using the Baum-
Welch algorithm with the discretized signals as input. As sum-
marized in Table 6, the discretization pipeline and the HMMs
have hyper-parameters that strongly influence their behavior.
To identify the best values for these parameters, we split the
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Table 6: Parameters to train the HMMs.
Parameter Values Description
h [12,15,18] Number of hidden components

with the HMMs
m [20,25,30] Resampling size
s [5,10,12] Number of clusters in K-Means

training data set into 2/3 for initial training and the remaining
1/3 for training evaluation. We used cross-validation to select
the parameters that yield the greatest log-probability over a se-
quence. Each HMM is trained to recognize a time series com-
ing from the positive examples of a single haptic adjective for a
given exploratory procedure and a given tactile sensor channel.
Consequently, we trained 16 HMMs (four motions times four
sensors) for each adjective. During feature extraction, each trial
is associated with a 16-dimensional vector of log-probabilities,
interpreted as a vector of dynamic features.

5.3. Feature and Label Analysis
Before passing them into any machine learning algorithm,

we analyzed our static and dynamic features by looking at
where our 60 objects lie in each feature space. This analysisal-
lows us to determine whether the selected features correspond
well to physical properties of the objects.

The static feature vector has 188 elements (47× 4), and its
values do not depend on the adjective being considered. Given
the way the HMMs are trained, there is a distinct 16-element
dynamic feature vector for each adjective, so we chose a repre-
sentative adjective (hard) to report here. The features were first
centered, normalized, and averaged across each of the 10 trials
per object, yielding 60 object-specific average feature vectors
for both the static and dynamic approaches. These average fea-
ture vectors were passed into PCA, and the top two principal
components are shown in Fig. 8 (static) and Fig. 9 (dynamic).
In both cases, neighboring objects seem to share physical prop-
erties such as compliance and texture, giving us confidence that
both approaches are producing valuable features. Note alsothat
the two spaces resemble one another but are not identical; the
static and dynamic features capture somewhat different aspects
of the interactions.

In parallel, we used correspondence analysis (CA) to inves-
tigate the validity of the human adjective ratings. CA allows
one to understand the relationship between stimuli (for us,ob-
jects) and descriptors (for us, binary haptic adjectives from ma-
jority voting) within a dataset that is categorical, non-negative,
and uniformly scaled [34]. CA places both the objects and
the adjectives in a shared perceptual space where the distance
between elements represents their perceived dissimilarity [34].
Figure 10 shows where each adjective and each object sit in the
first two dimensions yielded by CA. Examination of the plot
gives credibility to the human-provided adjective labels.For
example, we see that objects that aremetallicandcoolsit close
together, and objects such as Loofah and Gray Eraser are near
roughandscratchy.

We can now compare the PCA plots of the static and dynamic
data features with the CA plot of the adjective labels. Immedi-
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Figure 8: The first two principal components of the static feature space; each
PHAC-2 object is shown at the average location occupied by its trials.
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Figure 9: The first two principal components of the dynamic feature space for
the representative adjectivehard; each PHAC-2 object is shown at the average
location occupied by its trials.

ately we see that all three top principal components seem to
correspond to compliance, a highly salient object propertythat
is fundamental to the adjectivehard. However, when we start to
look at the second component, it is more difficult to make a clear
correlation between the three feature spaces. While it is appar-
ent that the adjective space’s second dimension relates to ob-
ject roughness, the second component of the two feature spaces
only slightly correlate with roughness, leading us to speculate
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correspondence analysis (CA)

that our robot may not be able to feel this object property as
easily as humans can.

6. Training the Classifiers

We trained classifiers to capture the static and dynamic nature
of the data using the database of 90% training object splits for
each adjective, holding back the 10% of objects designated for
testing each adjective, as described in Section 4.3.

6.1. Separate Static and Dynamic Classifiers

Given the static and dynamic features introduced in Sec-
tion 5, we trained two corresponding groups of 24 adjective-
specific classifiers using each adjective’s designated training set
(both positive and negative examples). Each classifier useda
linear support-vector machine (SVM) with the L2 metric [35].
We reserved 3 objects (30 feature vectors) from each train-
ing set for use in validation. The F1 score of each classifier
was calculated by averaging over 100 randomly selected vali-
dation sets. We used cross-validation and grid search to select
the SVM error penalty factorC, with values ranging from 100

to 106. This approach yielded 24 adjective-specific classifiers
based on the 188-dimensional static features (Sec. 5.1) and24
based on the 16-dimensional dynamic features (Sec. 5.2).

6.2. Static+ Dynamic Classifiers

We explored two techniques for merging the static and dy-
namic feature information. For the first method, we simply
combined the static and dynamic features to create a 204-
dimensional feature vector. We then trained a linear SVM using
the approach described in the section above. We call this clas-
sifier Combined. The second approach merged the two kernels
rather than the feature vectors. Given a valid kernel for the
static featuresKs and a valid kernel for the dynamic features
Kd, it is well known that a linear combination of the two is still

Table 7: Metric Equations

Precision Recall F1
tp

tp+fp
tp

tp+fn 2 · precision· recall
precision+ recall

a reproducing kernel for the underlying Hilbert space. We can
therefore construct a new merged kernelKm as:

Km = αKs + (1− α) Kd (3)

whereKs andKd are both linear kernels, and 0≤ α ≤ 1. After
conceiving of this approach, we trained an SVM for each ad-
jective using cross-validation and grid search to find the penalty
factorC and the mixing coefficientα. We call this multi-kernel
learning classifierMKL (see [36] for similar approaches.)

7. Results

All of the results reported below were obtained through test-
ing on the reserved adjective-specific test sets, which were
never seen during training, as described in Section 4.3. The
training and testing were performed on Linux-based PC com-
puters with Intel i7 processors with a single core speed of
3.8 GHz and total RAM of 16.0 GB. On these machines, a sin-
gle object exploration can be classified with all adjectivesin
approximately 10 seconds. The metrics that we have selected
are precision, recall, andF1 score, as defined in Table 7, where
tp is the true positive count (the number of correct positivere-
sults returned by the classifier), fp is false positives (thenumber
of results incorrectly labeled positive by the classifier),and fn
is false negatives (the number of positive results missed bythe
classifier).

Table 8 provides a summary of the results averaged over all
adjectives for each of the four classifiers introduced in Sec-
tion 6, plus two additional EP-specific classifiers discussed be-
low. Importantly, we have removed the contributions fromnice,
sticky, andunpleasantwhenever calculating the mean over all
adjectives because these labels have just one positive example
in the entire corpus. As explained in Sec. 4.3, the classifiers for
these three adjectives were trained on half of the trials recorded
for their exemplar object and then tested on the other half; nat-
urally, the machine learning algorithms overfit to these specific
objects and yielded test scores that do not accurately represent
how well the classifiers generalize.

7.1. Exploratory Procedure Breakdown

We first looked at how classifiers trained on the features from
only an individual EP (Squeeze, Hold, Slow Slide, Fast Slide)
performed across all of the adjectives. Each was trained using
the same methods described in Sec. 6.1 but looking at only the
47 static features or only the 4 dynamic features constructed
from the designated EP’s data. The results are shown in Table9
and Table 10, with adjectives listed in decreasing order of the
number of positive examples in the training set. When looking
at an individual phase, the static method generally performs bet-
ter than the dynamic method, presumably because it has more
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Table 8: Average scores for the developed adjective classifiers.

Classifier Precision Recall F1

Static, Individual EP 0.40 0.29 0.31
Dynamic, Individual EP 0.20 0.08 0.11
Static 0.48 0.51 0.47
Dynamic 0.62 0.47 0.52
Combined 0.61 0.59 0.57
MKL 0 .79 0.76 0.77

Note that each value reported here is the mean of the individual scores, so the
mathematical relationship between precision, recall, andF1 does not

necessarily follow the equation given in Table 7.

Table 9:F1 Score Across Adjectives and EPs Using Only Static Features
Squeeze Hold Slow Slide Fast Slide PE*

smooth 0.658 0.508 0.421 0.122 25
solid 0.846 0.893 0.968 0.833 22

squishy 0.774 0.877 0.655 0.712 21
compressible 0.769 0.909 0.868 0.776 20

hard 0.667 0.630 0.967 0.952 20
textured 0.000 0.095 0.087 0.065 16

soft 0.744 0.378 0.500 0.564 13
absorbent 0.667 0.529 0.850 0.600 9

rough 0.000 0.182 0.706 0.571 9
thick 0.250 0.000 0.160 0.000 9
cool 0.250 0.583 0.133 0.286 8

slippery 0.167 0.000 0.000 0.222 8
fuzzy 0.000 0.000 0.000 0.000 6
porous 0.696 0.526 0.258 0.000 6
springy 0.235 0.000 0.250 0.091 6
scratchy 0.000 0.000 0.000 0.000 5

hairy 0.000 0.333 0.250 0.533 4
bumpy 0.000 0.000 0.143 0.182 2
metallic 0.133 0.667 0.000 0.000 2
crinkly 0.000 0.000 0.000 0.000 1

thin 0.000 0.000 0.000 0.000 1
nice 0.000 0.000 0.909 0.571 0.5

sticky 0.000 0.000 0.000 0.000 0.5
unpleasant 0.444 0.000 0.615 1.000 0.5

*PE indicates the number of positive examples in the training set.

information available. Overall, using only a single EP fails to
do well at identifying adjectives when the number of positive
examples falls below about 10. There are some interesting ex-
ceptions with the static method for adjectives such ashairy and
metallic that have EPs that do relatively well even with only
a small number of positive examples, seemingly because the
EP is particularly well suited to judging that adjective’s char-
acteristics. On the other end of the spectrum, there also exist
adjectives that do poorly even with a high number of positive
examples, notablytexturedandsmooth.

7.2. Static and Dynamic Classifiers

We next looked at the performance of the full static and dy-
namic classifiers, which consider data from all four EPs; their
average scores are reported in the third and fourth rows of Ta-
ble 8. Interestingly, these results show that the full dynamic
classifier achieves a somewhat higher overall score than thefull
static classifier, reversing the trend found for individualEPs.
Figure 11 shows the differences between the scores for each
of the 24 adjectives. The dynamic classifier completely fails
to generalize forspringy, rough, thick, textured, fuzzyandslip-
pery, but these zero scores are largely offset by high scores for
the other adjectives. In contrast, the static classifier fails to gen-
eralize only forscratchy, crinkly and thin, but the scores for

Table 10:F1 Score Across Adjectives and EPs Using Only Dynamic Features
Squeeze Hold Slow Slide Fast Slide PE*

smooth 0.738 0.432 0.185 0.125 25
solid 0.836 0.815 0.681 0.750 22

squishy 0.776 0.636 0.278 0.571 21
compressible 0.750 0.776 0.065 0.235 20

hard 0.846 0.720 0.235 0.571 20
textured 0.000 0.000 0.000 0.000 16

soft 0.667 0.182 0.083 0.000 13
absorbent 0.788 0.000 0.000 0.000 9

rough 0.000 0.000 0.000 0.000 9
thick 0.000 0.000 0.000 0.000 9
cool 0.000 0.000 0.000 0.000 8

slippery 0.000 0.000 0.000 0.000 8
fuzzy 0.000 0.000 0.000 0.000 6
porous 0.000 0.000 0.000 0.000 6
springy 0.000 0.000 0.000 0.000 6
scratchy 0.000 0.000 0.000 0.000 5

hairy 0.000 0.000 0.000 0.000 4
bumpy 0.000 0.000 0.000 0.000 2
metallic 0.000 0.000 0.000 0.000 2
crinkly 0.000 0.000 0.000 0.000 1

thin 0.947 0.000 0.000 0.000 1
nice 0.000 1.000 0.000 0.000 0.5

sticky 0.000 0.000 0.000 0.333 0.5
unpleasant 1.000 0.000 1.000 0.000 0.5

*PE indicates the number of positive examples in the training set.

the remaining adjectives remain low, thus explaining its overall
lower performance when compared to the dynamic classifier.

7.3. Merged Classifiers
The results for the static and dynamic classifiers show that

the two are complementary in their capabilities. We therefore
expect a classifier that merges the static and dynamic informa-
tion to perform better than either individual classifier. When
we conducted these experiments, we discovered that only the
MKL classifier showed a significant improvement over the in-
dividual approaches, as seen in the bottom two rows of Table 8.
Figure 11 shows a side-by-side comparison of the adjective-
specific performance for the Combined and MKL classifiers.
The MKL classifier dominates the results, with an averageF1

score of 0.77. Surprisingly, both classifiers failed to learn the
adjectivescratchy, which was at least partially identifiable by
the dynamic classifier.

7.4. Humans
To obtain a baseline by which to judge the robot’s perfor-

mance, we re-analyzed the results of the human-subject study
by treating each individual as a classifier. Each participant’s bi-
nary predictions were scored against the human majority label
and then aggregated across objects using the same precision,
recall, andF1 metrics used to quantify the robot’s performance.
Figure 12 presents a box plot of thisF1 score per adjective for
all human subjects. The MKL classifier is overlaid on top of this
figure for a side-by-side comparison of robot and human per-
formance. In general, the robot’s MKL classifier tends to score
closer to the majority labels than the average human, achieving
an averageF1 across all adjectives of 0.77 versus the human
averageF1 score of 0.65.

8. Discussion

The presented results show that adjective classifiers trained
on more heterogeneous data outperform classifiers trained on
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Figure 11: Comparisons of theF1 scores between the Static and Dynamic classifiers (top row) and Combined and MKL classifiers (bottom row). The parenthetical
numbers with the adjective labels are the number of positive examples in the training set.
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Figure 12:F1 score comparison between the robot’s MKL classifier and all 36
human subjects (when tested against the majority-voted adjective labels). Each
box plot shows the second and third quartiles of the humanF1 scores, the line
shows the median, the filled symbol shows the mean, the whiskers show the
range up to 1.5 times the inter-quartile range, and dots mark outliers.

only a subset of the data when attempting to label objects that
have never before been touched. Although this result is not
new in the machine-learning community, it has profound impli-
cations in haptics and robotics in general.

The first source of heterogeneity comes from the different
ways in which the robot physically explored the object. While
certain EP-specific static classifiers do reasonably well with a
small number of positive examples, theF1 scores are very low
overall (Table 9), and the EP-specific dynamic classifiers do
even worse. This trend shows that when a robot is learning the
rich characteristics of an object, a single motion often does not
yield enough useful information to be reliable at generalizing
adjectives. The first jump in classification scores occurs when
the information from all the motions is unified into a single fea-

ture vector (either static or dynamic), explaining the difference
between the low individual EP scores and the higher full static
or dynamic scores seen in Table 8.

The BioTac sensors offer a multi-modal view into the haptic
perceptual space, with information coming from motion, pres-
sure, temperature, shape, and vibration. Our experiments show
that our two feature extraction approaches behave differently
when trying to recognize different adjectives. Figure 11 shows
that some dynamic classifiers fail at recognizing adjectives that
the static classifiers otherwise can, and vice versa. The best
choice is therefore unifying the two approaches to extracting
information from the voluminous sensory data streams.

The Combined classifier’s results indeed prove this point, al-
beit with an overallF1 score (0.57) that barely outperforms that
of the Dynamic classifier (0.52). A close look at Figure 11
shows that, although most of the 0 scores have been raised,
crinkly andscratchystill have a 0 score even though their Dy-
namic classifier score was 1. Also adjectives liketextured, fuzzy
andslipperyhad low scores in both the dynamic and static clas-
sifiers, and this trend has been kept in the combined classifier.
In contrast, the MKL classifier seems to have learned how to use
the available data best, achieving an averageF1 score of 0.77,
which is better than the average human participant. A close ex-
amination of the right part of the lower plot in Figure 11 shows
that MKL learned to generalize better than the Combined clas-
sifier when presented with a small number of positive examples.

The behavior of the MKL classifier can be further analyzed
by comparing the mixing factorα with the scores of the Static
and Dynamic classifiers, as shown in Figure 13. According to
equation (3), the greaterα is, the greater is the weight assigned
to the static features. Adjectives likehairy, solid, absorbent
andcool have non-extremeα values, indicating that both static
and dynamic features played an equal role in characterizingthe
adjective. On the other side, adjectives likeporousand thin
are chosen using only either the static or the dynamic kernels,
choices that are consistent with the relative scores of the two in-
dividual classifiers. The adjectivesslipperyandhard represent
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Figure 13: Mixing factorα for the MKL classifier in relation to the scores of the Static and Dynamic classifiers. Anα value of 1 indicates only the Static kernel is
considered, while a value of 0 indicates that only the Dynamickernel is considered.

an exception to this trend, where a greater weight is given tothe
kernel whose corresponding classifier performs worse.

The MKL approach is adept at combining the best of the
static and dynamic feature sets, yielding better overall results
than either classifier alone. An interesting parallel exists be-
tween the MKL classifiers and humans: it is known that hu-
mans can judge object compliance using only tactile cues or
only kinesthetic cues, with tactile cues being more useful [37].
Like the robot combining static and dynamic features, human
performance at compliance discrimination is best when both
tactile and kinesthetic cues are available [37].

Overall, the responses of the average human matched the ma-
jority vote with a similar level of performance as the MKL clas-
sifier, validating that MKL is indeed learning the mapping be-
tween physical interaction signals and haptic adjectives.In fact,
the MKL classifier is somewhat better than the average human
at predicting whether a new object will be voted as a positive
adjective example, a result that substantiates the value ofmulti-
modal tactile sensing and heterogenous exploratory procedures.

In examining the data for the single positive examples of
nice, sticky, andunpleasant, we noticed that the PR2 was more
consistent than expected across trials. All of our developed
classifiers could adeptly predict the labels for the withheld tri-
als, leading us to remove these scores from our aggregate results
to avoid bias. This finding suggests that future versions of this
experiment probably do not require 10 robotic interaction trials
for each object; approximately five trials would be sufficient.

Considering all of the results, it was reassuring that adjec-
tives trained with more positive examples generally achieved
a higherF1 score during testing. A notable exception was
with the adjectivetextured, which had 16 positive examples but
achieved anF1 score of only 0.2. This discrepancy led us to
look more closely at all of the other texture-related adjectives,
which includesmooth, rough, fuzzy, scratchy, and possiblyab-
sorbent. It seems that these adjectives generally did not perform
as well as other adjectives that had a similar number of training
examples. These results support the findings from Section 5.3
that texture was not the first or second principal component of
our feature space; it seems that our robot cannot feel textures as
easily as humans can, most likely due to wear of the patterned
ridges on the BioTac skins.

In this work we chose linear models for both feature ex-
traction (linear PCA) and classification (linear kernels).The
main reason behind this choice is the substantial computational
advantage linear models have over more complicated kernels.
This decision in turn drastically reduces the training timewhen
searching in a large parameter space via cross-validation.The
results in Table 4 also support our choice, as most of the vari-
ance in the sensors is captured by the first component of the
PCA projection of the data.

9. Conclusion and Future Work

We set out to create a robotic system capable of touching ev-
eryday objects and describing them with haptic adjectives.We
performed an experiment to learn what words humans choose
to describe a large set of selected objects, and we collectedhap-
tic data from a robot that touched these same objects ten times
each. The richness of the signals collected from the BioTac
sensors enabled us to perform a multi-modal analysis of object
properties. Based on prior robotics research and knowledgeof
human touch, our primary hypothesis was that characterizing
the feel of everyday objects with the acuity of human percep-
tion requires information gathered from different kinds of in-
teractions and diverse sensors. We therefore constructed both
traditional static and novel dynamic features from the haptic
data for use in learning the meaning of the haptic adjective la-
bels. We built classifiers of increasing sophistication andtested
them on previously unfelt objects. The results we have obtained
are very encouraging, in that a multi-kernel classifier trained on
both static and dynamic features performed better than the aver-
age human subject on the adjective labeling task. These results
could not be obtained by looking at one source of information
alone. Our experiments therefore prove our initial hypothesis
and pave the road for other new approaches to tactile informa-
tion analysis and classification.

There are many avenues available for future work. This re-
search calculated a large number of static and dynamic features
from the robot data; it would be useful to analyze which fea-
tures were most important for the learning of individual adjec-
tives and for overall performance. It would also be interesting
to apply a Bayesian selection approach similar to that done by
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Fishel and Loeb [18] to choose the best exploratory procedures
for discriminating each adjective. This approach should work
well because our static classifier seemed to do best when the
EP matched the characteristics of the adjective; as seen in Ta-
ble 9, bothcoolandmetallichad the best results withHold, the
EP that provides the most information about the object’s ther-
mal properties, while bothhairy androughfavored sliding EPs,
which we would expect to capture the most information about
texture.

This research did not focus on dexterous object interaction
but rather used a parallel-jaw gripper to perform EP’s. To pro-
vide similar tactile experiences, we required the human sub-
jects to emulate the capabilities of the robot’s two-fingered grip-
per. It would be interesting to reverse this paradigm and have
the humans interact with objects freely, lifting and sliding the
objects as they desired. One could then investigate a multi-
fingered BioTac-enhanced robotic hand capable of performing
movements similar to those of unrestricted humans. This ap-
proach would require a more complex manipulation controller
for lifting and placing objects, but it would allow one to study
a broader range of adjectives and evaluate the effectiveness of
the other EP’s described by Lederman and Klatzky [11].
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[9] M. Hollins, S. Bensmäıa, K. Karlof, F. Young, Individual differences
in perceptual space for tactile textures: Evidence from multidimensional
scaling, Attention, Perception, & Psychophysics 62 (2000)1534–1544.

[10] R. L. Klatzky, S. J. Lederman, V. A. Metzger, Identifyingobjects by
touch: An “expert system”, Perception and Psychophysics 37 (1985)
299–302.

[11] S. J. Lederman, R. L. Klatzky, Extracting object properties through haptic
exploration, Acta Psychologica 84 (1993) 29–40.

[12] A. M. Okamura, M. L. Turner, M. R. Cutkosky, Haptic exploration of
objects with rolling and sliding, in: Proc. 1997 IEEE International Con-
ference on Robotics and Automation, volume 3, pp. 2485–2490.

[13] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, K. J. Kuchenbecker,
Human-inspired robotic grasp control with tactile sensing,IEEE Trans-
actions on Robotics 27 (2011) 1067–1079.

[14] S. Chitta, J. Sturm, M. Piccoli, W. Burgard, Tactile sensing for mobile
manipulation, IEEE Transactions on Robotics (2011) 558–568.

[15] S. Griffith, J. Sinapov, V. Sukhoy, A. Stoytchev, A behavior-grounded ap-
proach to forming object categories: Separating containersfrom noncon-
tainers, IEEE Transactions on Autonomous Mental Development(2012)
54–69.

[16] J. Sinapov, V. Sukhoy, R. Sahai, A. Stoytchev, Vibrotactile recognition
and categorization of surfaces by a humanoid robot, IEEE Transactions
on Robotics 27 (2011) 488–497.

[17] C. Oddo, M. Controzzi, L. Beccai, C. Cipriani, M. Carrozza, Roughness
encoding for discrimination of surfaces in artificial active-touch, IEEE
Transactions on Robotics 27 (2011) 522–533.

[18] J. A. Fishel, G. E. Loeb, Bayesian exploration for intelligent identification
of textures, Frontiers in Neurorobotics 6 (2012) 1–20.

[19] A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, W. Bur-
gard, Object identification with tactile sensors using bag-of-features, in:
Proc. 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 243–248.

[20] N. Gorges, S. E. Navarro, D. Goger, H. Wörn, Haptic object recogni-
tion using passive joints and haptic key features, in: Proc.2010 IEEE
International Conference on Robotics and Automation, pp. 2349–2355.

[21] M. Loden, H. Olsson, L. Skare, T. Axell, A. H. Ab, Instrumental and
sensory evaluation of the frictional response of the skin following a sin-
gle application of five moisturizing creams, Journal of the Society of
Cosmetic Chemists 43 (1992) 13–20.

[22] Z. Du, W. Yu, Y. Yu, L. Chen, Y. Ni, J. Luo, X. Yu, Fabric handle clusters
based on fuzzy clustering algorithm, in: Proc. 2008 IEEE International
Conference on Fuzzy Systems and Knowledge Discovery, volume 3, pp.
546–550.

[23] F. Shao, X. Chen, C. Barnes, B. Henson, A novel tactile sensation mea-
surement system for qualifying touch perception, Proceedings of the
Institution of Mechanical Engineers, Part H: Journal of Engineering in
Medicine 224 (2010) 97–105.

[24] T. Taichi, M. Takahiro, I. Hiroshi, H. Norihiro, Automatic categorization
of haptic interactions-what are the typical haptic interactions between a
human and a robot?, in: Proc. 2006 IEEE-RAS International Conference
on Humanoid Robots, pp. 490–496.

[25] S. Lenser, M. Veloso, Non-parametric time series classification, in: Proc.
2005 IEEE International Conference on Robotics and Automation, pp.
3918–3923.

[26] L. Rabiner, A tutorial on hidden markov models and selected applications
in speech recognition, Proceedings of the IEEE 77 (1989) 257–286.

[27] I. McMahon, V. Chu, L. Riano, C. G. McDonald, Q. He, J. M. Perez-

Tejada, M. Arrigo, N. Fitter, J. Nappo, T. Darrell, K. J. Kuchenbecker,
Robotic learning of haptic adjectives through physical interaction, in:
Proc. 2012 IEEE/RSJ IROS Workshop on Advances in Tactile Sensing
and Touch-based Human-robot Interaction, Vilamoura, Algarve, Portu-
gal.

[28] V. Chu, I. McMahon, L. Riano, C. G. McDonald, Q. He, J. M. Perez-
Tejada, M. Arrigo, N. Fitter, J. C. Nappo, T. Darrell, K. J. Kuchenbecker,
Using robotic exploratory procedures to learn the meaning ofhaptic ad-
jectives, in: Proc. 2013 IEEE Internatational Conference of Robotics and
Automation, p. TBA.

[29] Penn Haptics, http://bolt-haptics.seas.upenn.edu/, 2013.
[30] H. Z. Tan, N. I. Durlach, G. L. Beauregard, M. A. Srinivasan, Manual

discrimination of compliance using active pinch grasp: The roles of force
and work cues, Perception and Psychophysics 57 (1995) 495–510.

[31] C. H. Lin, T. Erickson, J. Fishel, N. Wettels, G. Loeb, Signal processing
and fabrication of a biomimetic tactile sensor array with thermal, force
and microvibration modalities, in: Proc. 2009 IEEE International Con-
ference on Robotics and Biomimetics, pp. 129 –134.

[32] I. Jolliffe, Principal component analysis, Wiley Online Library, 2005.
[33] S. Lloyd, Least squares quantization in PCM, IEEE Transactions on

Information Theory 28 (1982) 129–137.
[34] D. Picard, C. Dacremont, D. Valentin, A. Giboreau, Perceptual dimen-

sions of tactile textures, Acta Psychologica 114 (2003) 165–184.
[35] C. Burges, A tutorial on support vector machines for pattern recognition,

Data mining and knowledge discovery 2 (1998) 121–167.
[36] M. Gönen, E. Alpaydın, Multiple kernel learning algorithms, Journal of

Machine Learning Research 12 (2011) 2211–2268.
[37] W. M. B. Tiest, A. M. Kappers, Kinaesthetic and cutaneous contributions

to the perception of compressibility, in: M. Ferre (Ed.), Proc. 2008 Eu-
roHaptics, volume 5024 ofLecture Notes in Computer Science, Springer-
Verlag, Berlin Heidelberg, 2008, pp. 255–264.

16


	Introduction
	Motivation
	Related Work
	Relation to Previous Research

	Materials
	Robotic Hardware
	Objects

	Experimental Setup
	Robotic Exploration
	Human Subject Study
	Penn Haptic Adjective Corpus 2

	Experimental Data
	Robot
	Human
	Train and Test Sets

	Features
	Static Feature Calculation
	Dynamic Feature Calculation
	Feature and Label Analysis

	Training the Classifiers
	Separate Static and Dynamic Classifiers
	Static + Dynamic Classifiers

	Results
	Exploratory Procedure Breakdown
	Static and Dynamic Classifiers
	Merged Classifiers
	Humans

	Discussion
	Conclusion and Future Work
	Acknowledgements
	Vitae

