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Abstract
Our work focuses on robots deployed in human environments. These robots, which will need specialized object
manipulation skills, should leverage end-users to efficiently learn the affordances of objects in their environment. This
approach is promising because prior work has shown that people naturally focus on showing salient aspects of objects
when providing demonstrations. In our work, we use a Guided Exploration approach that combines self and supervised
learning. We present experimental results with a robot learning 3 affordances on 4 objects using 1219 interactions.
We compare three conditions: (1) learning through self-exploration, (2) learning from supervised examples provided
by 10 näıve users, and (3) a combined approach of self-exploration biased by user input. Previous analysis of this
data focused on aggregate performance of these different strategies across all teachers, and showed that a combined
approach is the most efficient and successful. In this article, we provide additional details on these specific strategies
as well as an analysis of the variance seen across teachers in this experiment. We provide a characterization of failure
cases and insights for future work in learning from näıve end-users.

Keywords

1 Introduction

As robots make their way into unstructured human
environments such as homes and hospitals, they will
increasingly need to learn about and model their
specific environment quickly and with as little help as
possible from human end-users. Our work focuses on
expediting the robots exploration of new environments
through a novel combination of self-exploration and
human-guidance.

We take an affordance approach to this modeling
problem, whereby the robot builds representations of
its actions and the effects that they have on objects
in the environment. The term “affordance” was first
introduced by Gibson (1977). We use the ecological
definition of “action possibilities” that appear between
an agent and the environment that is commonly used
in robotics Şahin et al. (2007); Montesano et al.
(2008). Affordances provide a nice building block for
performing tasks. Given such affordance models of
an environment, a robot should be able to make
inferences about the objects that have the appropriate
affordances to accomplish a given task. In this work
we focus on how a robot can efficiently leverage a

Figure 1. A näıve user during the user study teaching “Curi”
the robot that the drawer has the open-able affordance.
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human end-user to build affordance models of actions
and objects.

In prior work, we presented and compared
three approaches to affordance learning: (1) the
traditional self-exploration strategy where the robot
exhaustively interacts with the workspace; (2) a
human-supervised exploration strategy where a
human provides example object interactions from
which the robot learns; and (3) a combined human-
guided approach that allows the robot to perform
self-exploration biased by information provided from
human teachers. We evaluated these three strategies
by learning 3 affordances across 4 different objects and
actions. We showed that, from an aggregate viewpoint,
using a human-guided approach, a robot can learn
an affordance model that is as effective as exhaustive
self-exploration with an order of magnitude fewer
interactions with the object Chu et al. (2016b).

This work expands on prior work with additional
details on the experiment and expanded explanations
of the exploration algorithms. Furthermore, we focus
on the observation from this prior work where we
saw that the 10 individual teachers in our experiment
showed high variance in their performance. Our aim
in this paper is to analyze this variance to determine
what caused some users’ demonstrations to be more
informative for exploration and others not.

2 Related Work

The field of robot affordance learning and exploration
is by no means a new field. In this section, we go
through some of the influential work in the areas
of robot affordance learning, robot exploration, and
guided exploration for learning affordances.

2.1 Robot Affordance Learning

Early work in affordance learning for robotics focused
on using primitive actions to interact and learn about
object effects. These established a framework for
affordance learning using exploration. Fitzpatrick et al.
(2003) used parametrized primitive actions to push
or roll objects. Stoytchev (2005) used a robotic arm
to use tools to bring objects within reach. Dogar
et al. (2008) tackled the traversability affordance
using visual cues and wheel encoders. Montesano
et al. (2008) learned affordances to be used for
imitation. In an effort to use and plan with affordances,
Krüger et al. (2011) developed a rich framework that
allowed for affordances to be defined as low-level
primitives as well as chained to perform high-level
tasks. Hermans et al. (2013a,b) investigated primitives
for pushing objects on a flat surface. Moldovan et al.

(2012) looked at the relationship between affordances
for multi-object manipulation tasks. In the area of
using scaffolding for affordance learning, Thomaz
and Cakmak (2009) demonstrated the importance of
scaffolding for learning affordances.

More recently, Koppula and Saxena (2013) used
affordances to predict and anticipate human activities.
Katz et al. (2013) used grasping affordances to learn
the best way to clear rubble in a pile. Varadarajan
and Vincze (2012) built on AfNet, an open affordance
initiative, by providing semantic context and household
manipulation objects. All of these works, however,
required specific primitive actions to be learned or
programmed, and did not use human input for
guidance.

2.2 Exploration

Many researchers are investigating how robots can
explore the world. One relevant area of research
is work on intrinsic motivation and curiosity-driven
exploration. Early work Oudeyer et al. (2007); Vigorito
and Barto (2010); Schmidhuber (1991) looked at using
rewards and expectations to guide the exploration
without any human supervision.

The latest work on intrinsic exploration from Ivaldi
et al. (2014, 2012) and Nguyen and Oudeyer (2014)
combined intrinsic exploration with human input.
Our work, by contrast, combines both human-
supervision and self-exploration. Methods using
intrinsic exploration assume the existence of an easily-
characterized reward signal, even though such reward
signals can be difficult to define for hard-to-find
affordances.

2.3 Socially Guided Exploration for Affordance
Learning

Ivaldi et al. (2012) introduced a method for human-
guided exploration by having a teacher verbally
command a robot to explore the environment with a
set of pre-defined primitives. The work, however, does
not address how to create more primitives.

Our work extends the previous work Thomaz and
Cakmak (2009) in two key ways: we apply human-
supervised affordance learning to more difficult-to-find
affordances, and we investigate the combination of
human-supervision and self-exploration. Our use of
haptic affordances has been presented in Chu et al.
(2016a), where we demonstrate that the use of a force
signal is useful and necessary for the kinds of object
manipulation affordances used here. The experiment in
this paper was first presented in Chu et al. (2016b) and
in this article, we provide a more detailed description
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of the exploration strategies used in the experiment
as well as further analysis of the data by following
up on the open question of why some individuals’
demonstrations worked well as seeds for exploration
and others did not.

3 Affordance Learning

For a robot to learn affordances, it needs to interact
with the environment and observe the effects of that
interaction. This interaction needs to be done by the
robot (as opposed to only observations of a human
performing the skill) because affordances are action
possibilities that occur between the environment and
the agent. More concretely, there exist many objects
that have affordances for a human that do not exist
for all robots (e.g. jar lid is too wide for the robot
to grasp). Once a robot interacts with an object and
observes the effects of that interaction, the agent can
learn what the environment affords for it. In our case, a
robot (agent) performs a set of actions A = {a1, .., aN}
on a set of objects O = {o1, ..., oM} to model the
effects that ai can have on oj , where i = {1, ..., N},
j = {1, ...,M}, and N and M are the number of actions
and objects respectively. We assume the effect of an
object-action (oj , ai) pair is labeled as a positive or
negative example of the affordance. Thus, it is a
supervised learning problem and the resulting model
can recognize the successful interactions of an object-
action pair.

In the simplest case, if the agent’s actions are
discrete, it could try all actions on all objects and
model the outcomes. However, a better method is
required to efficiently sample the infinitely large space
of real-world actions the robot could perform to
manipulate an object. For example, to open a drawer
such as the one seen in Figure 1, there are an
infinite number of directions a robot could move the
drawer in before discovering that it needs to pull the
drawer towards itself in a horizontal line. To make
the object exploration tractable, we provide the robot
with a set of parameterized primitive actions. The
exploration space is then defined by the continuous-
valued parameters for each primitive action. This
choice of representation has gained traction in the
reinforcement learning community and has shown great
promise with learning actions and skills Kober et al.
(2012); da Silva et al. (2014). Consider again the drawer
example, now the opening action can be a primitive
defined with three parameters (start, close-hand, and
end poses). Note that this still results in a sample
space that is infinitely large, because these actions
parameters are continuous-valued poses of the end-
effector.

(a) Closed bread
box

(b) Closed
drawer

(c) Pasta
Jar

(d) Lamp
off

(e) Opened
bread box

(f) Opened
drawer

(g) Pasta
Jar

(h) Lamp
on

Figure 2. Shown are the various objects the robot explored.
The top row are the objects before interaction and the
bottom row include the same objects with the effect the
robot is looking for. Note: pushing the drawer and pasta jar
shift the object on the table.

Thus, we present and compare five different
strategies in Sections 4 and 5 for efficiently sampling
this space to collect a sufficient set of examples to build
object-action affordance models.

3.1 Hardware Platform

For our experiments, we used the robot “Curi”, seen
in Figure 1. Curi has two 7 degree-of-freedom arms,
each with an under-actuated 4 DOF hand. The arm
can be controlled by physically moving it in a gravity
compensated mode and used to kinesthetically teach
the robot actions. We used the robot’s left arm for
all experiments. An ATI Mini40 Force/Torque (F/T)
sensor is mounted at each wrist, and an ASUS Xtion
Pro RGB-D sensor is mounted above the workspace.

3.2 Objects and Actions

We selected four household objects (Figure 2) for the
robot to interact with. Each of these are tracked using
the RGB-D sensor throughout the interaction, from
which we record visual object information commonly
used in affordance learning Thomaz and Cakmak
(2009); Montesano et al. (2008) (in 3D space rather
than 2D images). We record the color, orientation,
volume of the bounding box, the dimensions of the
bounding box (x,y,z), and the squareness of the object
(the ratio of the number of points in the object to the
area of the bounding box). We also store information
from the 6-axis F/T sensor in the wrist (Fx, Fy, Fz,
Tx, Ty, Tz) and the robot end-effector (EEF) position
relative to the centroid of the object point cloud. This
feature vector contains 18 values: 9 (visual), 6 (F/T),
and 3 (EEF) and is how we represent the effect of
object-action pairs for the affordance learning problem.
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(a) “Start here” (b) “Close your hand” (c) “End here”

(d) “Start here” (e) “End here”

Figure 3. Shown are the two primitive actions (pick and move) taught by users during the user study by using
keyframe-based kinesthetic learning from demonstration while the arm is in gravity compensated mode. The users indicate
poses within a keyframe using voice commands seen below each image. The pick action (3a,3b,3c) consists of a start, close,
and end pose and is being demonstrated on the lamp. The move action (3d,3e) consists of a start and end pose and is being
demonstrated on the drawer

The robot can perform two parameterized action
primitives: move and pick. Each is a sequence of
EEF poses relative to the centroid of the object point
cloud. The EEF pose is the position and orientation
of the robot hand for all 6 degrees-of-freedom (DOF).
A move action has two EEF poses (start and end).
The pick action has three EEF poses (start, where
Curi closes its hand, and end). For both primitives,
we generate a trajectory for the EEF by performing a
quintic spline between the EEF poses with an average
velocity of 1 cm/second. The two actions can be seen
in Figure 3 where näıve users from our user study are
demonstrating pick and move actions on the lamp
and the drawer respectively.

While all poses are needed to define the primitive
action, this paper will only modify the parameters of
the final pose for each primitive action due to the
sheer number of object interactions needed to explore
the continuous-valued parameters of all poses in a
primitive action. This is a reasonable simplification
since the start pose can be initialized by putting

the EEF near the object, as is common in existing
affordance work Fitzpatrick et al. (2003); Hermans
et al. (2013a). For both primitive actions in this work,
the final pose has the largest impact on successful
execution (e.g. the final pose is key in making the move
action succeed in pushing an object).

3.3 Affordances

The five specific object-action pairs and their
corresponding affordance used in this paper are
described below and summarized in Table 1. The
effects of each object-action pair can be seen in
Figure 2. These selected affordances represent a range
of difficulty: simple affordances that can be found in
a large part of the action space during exploration
(e.g. push-able can be found in a variety of ways)
while complex affordances require interacting with the
object along a specific dimension of the action primitive
space (e.g. open-able on the drawer requires the
robot to pull the object towards itself in a particular
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Table 1. Affordances

Object Action Effect Affordance

Breadbox Move Moves up open-able
Pasta jar Move Moves push-able
Drawer Move Moves push-able
Drawer Pick Pulls out open-able
Lamp Pick Pulls down turn-on-able

way, representing a small subset of the object-action
exploration space).

• Bread box: The lid of the breadbox can be
opened with a move action. Affordance: open-
able.

• Pasta jar: The pasta jar can be pushed across
the table. Affordance: push-able.

• Drawer: The drawer unit is light enough that
the robot can push it across the table. It
also contains shelfs that can be pulled open.
Affordance: push-able, open-able

• Lamp: When the string attached to the lamp is
pulled far enough, the lamp turns on Affordance:
Turn on-able.

The question we ask in this work is how to best
sample the space of our primitive actions’ continuous-
valued parameters to interact with objects and collect
effective examples for affordance modeling in a way
that is efficient. We present two baseline approaches,
Self-Exploration (SE) and Human-Supervised Explo-
ration (HSE), and compare these to three strategies
that represent a combined approach: Guided Aggregate
Exploration (GAE), Guided Iconic Exploration (GIE),
and Guided Boundary Exploration (GBE). All five of
these are detailed in the following two sections.

4 Baseline Exploration Strategies

Typical self-exploration strategies in robot affordance
learning Fitzpatrick et al. (2003); Stoytchev (2005);
Hermans et al. (2013a) exhaustively sample the space
of action parameters. These strategies know only that
it should perform actions around the object and the
main decisions needed to discretize the space of action
parameters relate to (1) what range the robot should
explore around the object and (2) the resolution (step-
size) to use in sampling. We present our version of self-
exploration, SE, below (Algorithm 1 and visually in
Figure 4). To understand the importance of these two
variables on exploration, consider the following section.

4.1 Self-Exploration (SE)

To represent all 6 DOFs of the EEF, requires three
variables (x,y,z) to describe the position and three

Figure 4. Shown above is a visual example of the
self-exploration algorithm. The algorithm is viewed in
two-dimensions to be visually clear. The exploration is
centered around the starting position of the object and the
two depths of exploration are shown in two different shapes.

Algorithm 1 Self-Exploration (SE)

1: procedure ComputePermutation(v = [v0, v1, ...vn])
2: Pset ← set of permutations of (x, y, z) ∀x, y, z ∈ v
3: Pset ← Pset − {(0, 0, 0)}
4: return Pset
5: procedure GenerateExploration(expert dist. d)
6: α← d+ 10cm
7: D1 ← ComputePermutation([−α, 0, α])
8: D2 ← ComputePermutation([−α, −α

2
, 0, α

2
, α])

9: Unique← (D1 ∪D2)− (D1 ∩D2)
10: ExploreSet← Random(Unique, 100)
11: return ExploreSet

variables (rx, ry, rz) to describe the orientation in
Euler space. However, in practice, it is infeasible for
the robot to perform exploration in all six dimensions.
For example, suppose we only vary the orientation of
the EEF between −90◦ and 90◦, with a step-size of
90◦ and the position between −α and α with a step-
size of α. Assume α is a constant selected to guarantee
the search covers some maximum distance needed for
the EEF to have a chance at achieving the object-
action pair in question. Even this coarse exploration
of the action space results in 676 interactions per EEF
pose per object-action pair and, realistically, a higher
resolution search will most likely be needed to find the
affordance.

It is infeasible for the robot to perform all
exploratory actions for all five object-action pairs
and all possible primitive action parameter poses. To
reduce the number of exploratory actions, we only
sample the space of parameters of the final pose of
each primitive action. An expert (one of the authors)
provides a starting pose (position and orientation) for
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move and a start and close pose for pick. These
are provided to be ideal for achieving the affordance.
We believe it is a reasonable assumption to provide
the start/close pose, because there exist state-of-the-
art algorithms that find the best grasp/interaction
points for a wide range of objects (e.g. the handle
of the breadbox or the ball on the chain for the
lamp). Furthermore, providing this information only
helps self-exploration by providing expert information
as to where the robot should be interacting. With
this assumption, SE exhaustively explores the position
(x,y,z) of the final end pose for each primitive action.
While varying the orientation could provide additional
ways to achieve an affordance, we fix the final pose
orientation to be the same as the start pose to keep
exploration tractable. Even with these constraints, the
number of explorations generated can still result in an
impractical number of exploratory actions. Thus, we
limit the number of samples to 100 actions per object.

To generate these 100 samples, we demonstrate one
successful interaction with each object to calculate
the maximum distance (α) the EEF must travel to
achieve each affordance. To ensure this is a conservative
estimate we extend the expert demonstrated distance,
d, (α = d+ 10cm), resulting in the maximum distance
the SE samples to create exploratory actions. Rather
than provide more information to SE about the
resolution to sample within these maximum bounds,
we adaptively split the action parameter space in
half until we reach the designated 100 samples. Thus,
we start with a coarse exploration of the space, and
continue to sample at a higher resolution until we reach
100 samples of the action space. First, we explore all
possible permutations of the three dimensions (x,y,z)
for the discrete values: −α, 0, and α. This has 27
different permutations, but we remove the interaction
where nothing changes (0, 0, 0) for a total of 26 EEF
poses to execute as exploratory actions on the object,
which we call D1. To sample at a higher resolution,
we split the step-size in half, resulting in five discrete
values: −α, −α2 , 0, α

2 , and α and a total of 125
permutations. Again, we remove (0, 0, 0) as well as any
actions already included in D1, resulting in 98 new
EEF poses, which we callD2. This adaptive split can be
seen visually in 2-dimensions in Figure 5. To limit each
object-action pair to 100 samples, we randomly select
74 interactions from D2 to add to the 26 interactions
of D1. Together, D1 and D2 compose the exhaustive
set of interaction samples for SE.

Note, as mentioned earlier, to make SE tractable, we
provided expert information to the algorithm in the
form of the start position and orientation of the EEF

as well as the maximum distance (α) that the EEF has
to explore to find the affordance.

4.2 Human-Supervised Exploration (HSE)

The next baseline approach uses a human teacher to
fully supervise the collection of examples of object-
action interactions. Through action demonstrations,
the human teacher provides successful or unsuccessful
examples of the affordance. Our approach, HSE, builds
on Thomaz and Cakmak (2009), but uses more realistic
objects found in everyday homes and generates actions
in the full 6 DOF range of the robot EEF.

For HSE, we collect data from people in the campus
community who had not interacted with our robot
before. They used the same two action primitives
(move and pick) that the robot uses during SE. Users
teach a move action by moving the arm to a start pose
and then an end pose, and a pick action by moving
the arm to a start, grasp, and end pose, which can be
seen in Figure 3. The robot creates an action trajectory
in the same manner as SE, by splining between the
action poses. The data used for affordance learning is
collected when the robot autonomously executes this
human-taught action on the given object. This allows
the robot to record the visual and haptic sensory data
without erroneously capturing noise from user contact.

We conducted a user study with 10 participants (5
male, 5 female) from a college campus. At the start
of their session, participants were instructed briefly
on the definition of affordances as well as how to
verbally command and move the robot for kinesthetic
teaching. For practice, they taught two actions on two
objects: lifting the lid off a jar with the pick action and
tipping an object over with the move action. These
affordances are not included in our analysis. Once they
were comfortable with how to control the robot and
had performed several example affordances, we began
their real data collection.

The participants taught the robot about the 3
affordances over the 4 objects described in Table 1 for
a total of 5 object-action pairs. For each object, they
were told the specific action (move or pick) to use
and the effect to show the robot. We instructed them
to think about what strategy they might use if they
were to teach a child about that specific affordance.
Participants were instructed during this time to also
think about negative examples as a good way to teach
a child about an affordance. However, we wanted
to see how people teach robots about affordances
naturally. Thus, we did not force users to provide
negative examples or provide guidance as to how they
should teach the robot. A single example for affordance
learning was collected each time the robot executes
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Table 2. Number Examples from Each Exploration Strategy

Object Action SE HSE GAE GIEa GBEa

Breadbox Move 100 64 31 12 9
Pasta jar Move 100 48 30 12 9
Drawer Move 100 51 31 12 9
Drawer Pick 96 41 31 12 9
Lamp Pick 100 51 N/A N/A N/A

a These are the number of examples generated for each user model, since
these approaches operate on an individual user basis.
Note: N/A means there were not enough examples for that strategy

the taught action autonomously. To generate multiple
object-action examples, participants could either move
the object and repeat the previous action or they could
teach a new action.

For the complex object-action pairs (i.e. breadbox-
move, drawer-pick, and lamp-pick), participants were
given 10 minutes to provide examples to the robot.
For the simple pairs (pasta jar-move and drawer-
move), they were given 5 minutes. The motivation
for this difference was based on pilot studies. For
simple affordances, users quickly developed strategies
for teaching, whereas complex affordances required
more time and trials for the user to develop a strategy
to get the robot to perform the desired user action.
The selected time constraints facilitate the collection
of several interactions of each object-action pair and
limit each study to within an hour, thus preventing
user fatigue. To control for ordering effects in the data,
we counter-balanced the order in which the five object-
action pairs were taught across users. At the end of the
experiment, participants answered a single open-ended
survey question that asked them about their teaching
strategy. The total number of examples collected across
all 10 users can be seen in Table 2.

5 Guided Exploration Strategies

While users provide key information and useful
examples of affordances, it is cumbersome to have
people provide an exhaustive set of examples for each
object-action pair. During self-exploration, the robot
can easily generate an exhaustive search, but has no
real concept of where to focus that search. Combining
the strengths of both approaches should yield the
best of both worlds. Our primary research question
is how to effectively bias SE with information from
human teachers. In this section, we present three novel
strategies that differ in how they integrate teacher
input for exploration.

Algorithm 2 Guided Aggregate Exploration (GAE)

1: α← expert demo dist. +10cm
2: p(j,i) ← {p1...pn} for n = 1...10
3: µji = mean(p(j,i))

4: σ2
ji = variance(p(j,i))

5: ~rchange ← µji − EEFstartposition
6: ~echange ←

~rchange

||~rchange||2
7:

8: procedure GenerateExploration
9: exploreRegions = [µji, µji + σ2

ji, µji − σ2
ji]

10: ExploreSet← ComputePermutation(exploreRegions)
11: c← 1
12: ~pchange ← (0, 0, 0)
13: while ‖~pchange‖ < α do
14: ~pchange = ~echange ∗ c ∗ α
15: ExploreSet← ExploreSet ∪ {~pchange}
16: c++

return ExploreSet

Figure 5. Shown is a visual example of the GAE algorithm.
The algorithm is viewed in two-dimensions to be visually
clear. The exploration is centered around the mean ending
position of the first demonstrated by all of the users and
exploration is bounded by the variance of the demonstrations.

5.1 Guided Aggregate Exploration (GAE)

Our first approach, GAE (Algorithm 2), takes an
aggregate view of the guidance that people provided
from HSE. The algorithm is described in detail below
and shown visually in 2-dimensions in Figure 5. For
each object-action pair, we build a new set of samples
in the action space based on the mean and variance
of the final EEF position of each first action shown
by the ten people in our study. We use only the first
action from each user to create a strategy that could be
generated using a person’s first intuition for teaching
the affordance. However, this is difficult to achieve
using just one action primitive and so we built a set
that contains the final position of the first action from
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all users. More concretely, let pn be the final EEF pose
from the first demonstration by user n. Now we define
P(j,i) as the set of final EEF positions from all users’
first demonstrations for an object-action pair (oj , ai):
P(j,i) = {p1...pn} for n = 1...10. We compute the mean
(µji) and variance (σ2

ji) of P(j,i), which represents an
aggregate of the human provided input, and use them
to generate new sample points in the action space. Note
that each value contains three numbers (for each axis).

During SE, we sampled the final position of the
EEF by adaptively splitting the action space about the
starting position using an expert defined α. In GAE,
we instead replace α with the computed σ2

ji and center
the sampling of the final position of the EEF using µji.
This generates an action primitive that starts at the
same position defined by the expert and ends using
all permutations of the three dimensions (x, y, z) for
the discrete values: µji + σ2

ji, µji, and µji − σ2
ji. For

each object-action pair, we have 27 sample locations
and use the same EEF orientation used during SE.
This strategy explores along the dimensions (x,y,z)
of high variance, which are locations in the action
space where the object-action can be discovered in a
variety of positions. It also constrains the exploration
in dimensions of low variance as these are important
to finding the affordance.

Additionally, while collecting the SE interactions, we
noticed that each object-action pair had a direction of
change. For example, the open-able drawer affordance,
requires moving the EEF perpendicular to the drawer
towards itself and the open-able breadbox at an angle
away from itself. To focus the exploration along this
direction of change (~echange), we do an additional
sampling of the EFF action space along this dimension.
The ~echange is actually the unit vector between the
start (or close) and end positions of the EEF in
the action primitive. We scale ~echange by different
magnitudes and use the resulting vector as the position
in the final EEF pose.

To compute ~echange, we subtract and normalize
the expert selected starting position from µji. For
consistency, we use the same resolution from SE
(α) as the base increments to the magnitude.

Precisely, ~echange =
~rchange

||~rchange||2 where ~rchange = µji −
EEFstartposition and the final EEF position is ~echange ∗
c ∗ α where c = {1...C}. C is the max number of times
we can increase the magnitude by before we reach the
max exploration distance allowed (set in SE: α). This
results in 3 new interactions for pasta jar-move and 4
for all other object-action pairs.

Algorithm 3 Guided Iconic Exploration (GIE)

1: S ← EEF position of final pose in an(S)
2: F ← EEF position of final pose in an(F )
3: ~rSF ← (F − S)
4: procedure GenerateExploration
5: ExploreSet← []
6: for p in [S,F ] do
7: ExploreSet← ExploreSet ∪ {[px ±
‖~rSF ‖2, py, pz]}

8: ExploreSet← ExploreSet ∪ {[px, py ±
‖~rSF ‖2, pz]}

9: ExploreSet← ExploreSet ∪ {[px, py, pz ±
‖~rSF ‖2]}

10: return ExploreSet

Figure 6. Shown is a visual example of the GIE algorithm.
The algorithm is viewed in two-dimensions to be visually
clear. The exploration uses the first successful and first
unsuccessful demonstrations to determine the resolution of
exploration as well as where in the space to explore around.

5.2 Guided Iconic Exploration (GIE)

Our next approach, GIE (Algorithm 3 and shown
visually in Figure 6), uses each human teacher’s input
individually to bias the exploration of the action
space rather than relying on the aggregate of several
teachers. Specifically, we use only two samples (the first
successful an(S) and the first failed an(F ) interaction)
from user n to generate a new set of samples. We
select an(S) and an(F ) because this provides crucial
information on the location of the boundary between
affordance success and failure in the action space.
Furthermore, selecting an(S) and an(F ) allows us to
determine the viability of having a user provide two
samples of the space and having the robot take over
afterwards.

We define ~rSF to be the vector extending from S
to F , where S is the position (3D) of the EEF in the
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Algorithm 4 Guided Boundary Exploration (GBE)

1: S ← EEF position of final pose in an(S)
2: F ← EEF position of final pose in an(F )
3: ~rSF ← (F − S)
4: procedure GenerateExploration
5: ExploreSet← []
6: for θ in [−π

2
, π
2
, π] do

7: ExploreSet← ExploreSet ∪ {rotateX(S +
~rSF
2
, θ)}

8: ExploreSet← ExploreSet ∪ {rotateY (S +
~rSF
2
, θ)}

9: ExploreSet← ExploreSet ∪ {rotateZ(S +
~rSF
2
, θ)}

10: return ExploreSet

final pose of an(S), and F is the final position of the
EFF in an(F ). The L2 norm of ~rSF provides a crucial
piece of information that, during SE, we had to get
from an expert: the exploration resolution the robot
should use to achieve the affordance. We can look for
the iconic or prototypical examples of successful and
failed interactions by adding and subtracting ||~rSF ||2
from the final pose of the EEF in the action primitive
provided by the user in all dimensions (x, y, z). This
results in 6 final EEF poses for an(S) and 6 final EEF
poses for an(F ) for a total of 12 final EEF poses. Each
of the computed final EEF poses are used to generate
primitive actions by replacing the final EEF pose of
the primitive action provided by the user.

Note that all poses in the primitive action are
generated from the user provided sample. Therefore,
not only are we inferring the resolution of the search
space with ||~rSF ||2, but we also no longer need
an expert to define the start or close pose of the
EEF primitive action. This is particularly important
for instances where the a robot manipulator is not
standard or easily modeled, or the object handle is not
visually distinct (e.g. the small lip of a drawer).

5.3 Guided Boundary Exploration (GBE)

In GIE, we inferred the boundary between success and
fail in the action space by concentrating the new action
samples around an(S) and an(F ). Now we introduce
GBE (Algorithm 4 and visually in Figure 7), which
explicitly samples along the boundary. This strategy
also uses two action samples (an(S) and an(F )) from
each user, and S, F , and ~rSF are the same as before.

To generate the boundary between success and
failure in the action space, we use the midpoint between
S and F , and coarsely generate multiple vectors
circling the midpoint. Specifically, we take ~rSF

2 and
translate it to the position halfway between S and F .
We rotate this new vector about each axis (x, y, z) for

Figure 7. Shown is a visual example of the GBE algorithm.
The exploration uses the first successful and first
unsuccessful demonstrations to determine the resolution of
exploration as well as where in the space to explore around.

the angles π
2 , -π2 , and π. We hypothesize that one of

these vectors is the real boundary for the action space.

GBE generates 9 different final EEF poses in the
action space (3 for each axis) that try to find the
boundary between the successful and failed affordance
interactions. Similar to GIE, we generate each sample
by replacing the EEF position in the final EEF pose in
an(S). Note that since we are using the vector from S
to F , we only use an(S) and not an(F ). Just like GIE,
we no longer need an expert for the start pose, close
pose, or orientation of the actions primitives.

6 Affordance Modeling

We used all five exploration strategies to select actions
for the robot to execute to collect example object
interactions for all 5 object-action pairs. In total, the
robot executed 1219 interactions with the environment
(SE (496), HSE (255), GAE (123), GIE and GBE
(345)∗).

Each interaction was hand labeled as “Success” or
“Failure” depending on whether or not the object
interaction achieved the affordance. An example
interaction with the breadbox can be seen in Figure 8.
We used the following cutoffs for “Success”:

∗ GIE and GBE often explored similar locations around the
object. As a result, we collected GIE and GBE as a single set and

removed similar interactions using a 2cm threshold for position

and 45◦ threshold for orientation.

Prepared using sagej.cls



10 Journal Title XX(X)

(a) Approach handle (b) Moving handle (c) Successfully opened bread box

(d) Approach handle (e) Unsuccessfully opening bread box

Figure 8. Shown are example interactions of Curi executing the move action on the bread box to find the open-able
affordance. The top row (8a,8b,8c) show Curi successfully finding the open-able affordance. The bottom row (8d,8e) shows
an example of Curi failing to find the affordance.

• Breadbox (open-able) - the breadbox had to
be completely open. Any interactions where the
robot only opened the box partially is a failure.

• Pasta jar (push-able) - the jar is pushed any
distance without tipping.

• Drawer (push-able) - the drawer is pushed any
distance.

• Drawer (open-able) - the robot has to pull the
drawer out greater than or equal to 5.5 inches
(the halfway point)

• Lamp (turn-on-able) - the robot has to turn on
the lamp without causing the lamp to tip/wobble

To compare the five search strategies, we attempt
to train 32 separate models for each object-action pair
using the collected data; 2 for strategies that used the
holistic approach to search (SE = 1, GAE = 1) and 30
models from the strategies that build a model per user
(HSE = 10, GIE = 10, GBE = 10).

6.1 Model Representation

We represent each object-action pair using two Hidden
Markov Models (HMMs) Rabiner and Juang (1986),
where one model is built from successful interactions
and one model is built from failed interactions. We
build two models so that during classification, we
can compute the log likelihood (a representation of
the probability) of an interaction occurring for both

models and select the model label that has the higher
likelihood. Using relative likelihood avoids tuning a
likelihood threshold for each object-action pair.

We selected HMMs because of the time-varying
nature of the interaction. Furthermore, using a
generative model that contains information about
the EEF trajectory may allow us to generate
actions for exploring new objects in future work.
The trained HMMs are ergodic (all states are
reachable from all other states) and the parameters
of the n-state HMM (A,B,π), are learned using
Expectation Maximization (EM), where A is the
transition probability distribution (nxn), B the
emission probability distributions (nx1), and π the
initial state probability vector (nx1). B is modeled
using a continuous multivariate Gaussian distribution.
The observation state-space O is composed of visual
information, F/T information, and EEF relative to
the object as described in Sec. 3.2. To select the
number of states n for each HMM, we performed 5-
fold cross-validation within the training set described
in Section 6.2. For our implementation, we used the
Python machine learning library scikit-learn Pedregosa
et al. (2011).
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Table 3. Percentage of Positive Interactions Per Strategy

Object-Action SE HSEa GAE GIEa GBEa

Breadbox-Move 8% 50% 39% 35% 42%
Pasta Jar-Move 44% 77% 93% 34% 33%

Drawer-Move 43% 78% 100% 28% 36%
Drawer-Pick 18% 38% 74% 33% 44%
Lamp-Pick 2% 4% N/A N/A N/A

a Values are averaged across each user
Note: Darker shading denotes higher scores and N/A means there were not
enough examples for that strategy

6.2 Training and Testing

We split the data collected from each strategy into two
sets: train and test. The train set for each strategy
contains a randomly selected 80% of the samples from
that strategy. The test set is comprised by merging
the remaining 20% of the samples from each of the
strategies. This results in a test set that contains
examples from all strategies. Thus, each strategy
trains using 80% of its own sample set, but is tested
on a common test set that contains samples from
all strategies. We evaluated the object-action models
using standard metrics for binary classification of
precision, recall, and F1 score such that precision =

tp
tp+fp ; recall = tp

tp+fn ; and F1 = 2 · precision · recall
precision+ recall where

tp is the number of true positives, fp false positives,
tn true negatives, and fn false negatives. Precision is
a measure of quality (e.g. how accurate is the model
when it does label an interaction with the drawer as
open-able?) and recall is a measure of completeness
(e.g. of all interactions with the drawer, did the model
miss any instances of open-able?).

7 Aggregate Results

7.1 Exploration Coverage

Exploration coverage can be broken down into two
categories (1) the total area of the action space of
the object and (2) the ratio between successful and
unsuccessful interactions. We are interested in the
coverage of the action space because the end goal for
our evaluation is to find the separating line between
interactions that find an affordance and interactions
that do not. Successfully finding this line allows us
to build a model that can correctly determine what
it means to find and not find the affordance. For
SE, this boundary is completely unknown and the
best it can do is exhaustively search, which results
in a large number (100 per object-action pair) of
executions. In contrast, guidance from human-users
provides information on where this boundary might
lie and as a result, each of the guided exploration
strategies requires fewer interactions (seen in Table 2).

Table 4. Classification Scores on All Exploration Strategies

(oj , ai) Strat. n Precision Recall F1 Score

Breadbox
Move

SE 1 0.73 0.78 0.75
HSEa 9 0.69±0.28 0.48±0.42 0.45±0.34
GAE 1 0.75 0.53 0.62
GIEa 5 0.75±0.05 0.62±0.35 0.60±0.27
GBEa 3 0.81±0.08 0.53±0.31 0.57±0.24

Pastajar
Move

SE 1 0.54 0.97 0.70
HSEa 3 0.90±0.14 0.23±0.24 0.29±0.25
GAE 0 N/A N/A N/A
GIEa 2 0.65±0.12 0.80±0.20 0.69±0.01
GBEa 4 0.53±0.36 0.45±0.40 0.39±0.28

Drawer
Move

SE 1 1.00 0.35 0.52
HSEa 3 0.40±0.43 0.06±0.06 0.08±0.07
GAE 0 N/A N/A N/A
GIEa 1 0.51±0.00 0.88±0.00 0.65±0.00
GBEa 1 0.50±0.00 0.56±0.00 0.53±0.00

Drawer
Pick

SE 1 0.66 0.93 0.77
HSEa 4 0.66±0.41 0.26±0.42 0.22±0.33
GAE. 1 0.69 0.93 0.79
GIEa 3 0.68±0.01 0.90±0.07 0.77±0.02
GBEa 2 1.00±0.00 0.06±0.03 0.10±0.06

a Reported values are averaged across the n user or user-biased models.
Note: Darker shading equates to higher scores and N/A means no model
could be built using the example

We also showed that by having human-input, it is
possible to design strategies (GIE and GBE) that will
search around this boundary to provide a balanced
ratio of successful and unsuccessful interactions (see
in Table 3).

For the Lamp-Pick affordance, only one of ten users
and two SE interactions were able to complete the
action successfully. To train and test a success HMM,
we need a minimum of three successful interactions,
otherwise the Guided exploration strategies cannot be
generated. Thus we exclude Lamp-Pick in the rest of
the results. Furthermore, given the limited data from
human teachers, some users did not provide sufficient
data to build both HMM models (i.e. min of 3 positive
and 3 negative), and in some cases this carried over to
the user-biased data sets as well. Column n in Table 4
indicates the number of HSE or Guided strategies with
sufficient data to build the object-action HMM model.

7.2 Model Performance

Our prior results Chu et al. (2016b) showed that
interactions from HSE (Table 4) were overly focused
on positive examples and the number of trials
(approx. 5) were insufficient to build models that
could perform on par to self-exploration. Furthermore,
Guided exploration bridged this performance gap
while still requiring far less (an order of magnitude)
interactions than self-exploration with GIE performing
better than GBE and GAE. The results noted the
high variance between the performance of user-specific
models, but did not explore why this occurred. In
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Table 5. User Specific Classification Scores for Strategies HSE, GIE, and GBE

Human Iconic Boundary

Object-Action User Precision Recall F1 Precision Recall F1 Precision Recall F1

Breadbox Move

User 1 1.00 0.01 0.03 N/A N/A N/A N/A N/A N/A
User 2 0.74 0.29 0.42 0.69 0.62 0.65 0.71 0.90 0.79
User 3 0.71 0.84 0.77 N/A N/A N/A N/A N/A N/A
User 4 0.00 0.00 0.00 N/A N/A N/A N/A N/A N/A
User 5 0.60 0.13 0.22 N/A N/A N/A N/A N/A N/A
User 6 0.72 0.97 0.82 0.72 1.00 0.84 0.83 0.57 0.68
User 7 0.73 0.99 0.84 0.72 0.99 0.83 N/A N/A N/A
User 8 1.00 0.09 0.16 0.80 0.06 0.11 0.90 0.13 0.23
User 9 0.73 0.97 0.83 0.82 0.46 0.58 N/A N/A N/A

Pastajar Move

User 1 1.00 0.09 0.17 0.77 0.61 0.68 0.65 0.67 0.66
User 2 0.70 0.58 0.63 N/A N/A N/A 0.00 0.00 0.00
User 3 1.00 0.03 0.06 0.53 1.00 0.69 1.00 0.15 0.26
User 6 N/A N/A N/A N/A N/A N/A 0.48 1.00 0.65

Drawer Move

User 2 0.00 0.00 0.00 N/A N/A N/A N/A N/A N/A
User 3 1.00 0.03 0.06 N/A N/A N/A N/A N/A N/A
User 5 N/A N/A N/A 0.51 0.88 0.65 0.50 0.56 0.53
User 8 0.21 0.15 0.17 N/A N/A N/A N/A N/A N/A

Drawer Pick

User 3 0.65 0.98 0.78 N/A N/A N/A N/A N/A N/A
User 4 N/A N/A N/A 0.69 0.84 0.76 1.00 0.02 0.04
User 5 1.00 0.02 0.04 0.67 0.87 0.76 N/A N/A N/A
User 6 0.00 0.00 0.00 N/A N/A N/A N/A N/A N/A
User 7 N/A N/A N/A 0.67 1.00 0.80 1.00 0.09 0.16
User 8 1.00 0.02 0.04 N/A N/A N/A N/A N/A N/A

Note: Darker shading equates to higher scores and N/A means no model could be built using the example

the next section, we investigate the difference between
users to determine why this might have been the case.

8 User Specific Results

To understand why some user specific models
performed better than others, we take a deeper look
at each user. We first look at the precision, recall,
and F1 scores for each user specific strategy (HSE,
GIE, and GBE). This can be seen in Table 5. As
described previously, several users outperformed self-
exploration (5 users in HSE, 5 users in GIE, and 1 user
in GBE across all four object-action pairs). Table 5
also shows why GIE outperforms GBE and HSE on
aggregate. While many of the models from HSE and
GBE do equally as well as models from GIE, there
are several models in HSE and GBE that perform
poorly. In contrast only 1 model in GIE performs
poorly (Breadbox-Move: User 8).

Interestingly, for some users, even though the user
provided enough positive or negative examples to build
models for HSE, GIE and GBE were not able to
find enough examples. This tells us that the first
successful and unsuccessful demonstrations were not
diverse enough to provide a sufficient amount of
exploration range for GIE or GBE. Specifically, for

all object-action pairs except for Pastajar-Move, there
were users where HSE could build a model, but GIE or
GBE could not. To better understand this, we looked
at the pose of the first successful and unsuccessful
demonstration provided from users that generated
good GIE/GBE models and compared them to users
who did not. In Figure 9, we can see the comparison
of the final pose of each user’s first successful
and unsuccessful demonstration. Visually, the general
location of the demonstrations seem relatively similar.
However, computing the average Euclidean distance
between the successful and unsuccessful positions
(shown in Table 6), shows that participants who
provided demonstrations that were further apart in
distance, allowed GIE and GBE to generate better
models. This makes intuitive sense as both GIE and
GBE rely on the user’s demonstration to determine
the resolution to search within. If the resolution is
too small, then the algorithm does not explore a large
enough range to capture a balanced set of positive and
negative interactions.

8.1 Exploration Coverage

In Chu et al. (2016b), we visually showed the difference
between strategies in the action space (EEF position
relative to the object). Here we visualize the action
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(a) Breadbox Move (b) Drawer Move (c) Drawer Pick

Figure 9. This shows the first successful and unsuccessful demonstration for the affordances Breadbox-Move, Drawer-Move,
and Drawer-Pick. The symbols indicate if the demonstration given was a success or fail demonstration. The colors separated
the users that could generate GIE/GBE models and those who could not (green - models were generated, red - models were
not). Note: this figure requires color to fully understand.

(a) User 2 (b) User 6 (c) User 8

Figure 10. Shown is the action space (EEF relative to the object) for strategy Guided Iconic Exploration for users 2, 6, and 8
for the object-action pair Breadbox-Move. The arrow indicates the direction the EEF palm is facing. Successful interactions
are circles and failed interactions are crosses.

Table 6. Average Distance Between Demonstrations

Object-Action Good (cm) Poor (cm)

Breadbox Move 8.46 ± 0.05 7.3 ± 0.19
Drawer Move 32.94 ± 0.0 24.60 ± 0.14
Drawer Pick 8.98 ± 0.01 8.08 ± 0.019

space to provide insight into why a model based on a
certain user’s demonstrations might not have generated
a good model. Table 5 shows that only one user’s GIE
model performed poorly. Furthermore, this particular
user (user 8) does poorly across all of the user specific
strategies (HSE, GIE, GBE) for the object-action
pair Breadbox-Move. The next set of graphs will be
presented as a case study to determine what differences
exist between user 8 and the rest of the users.

In Figure 10, we see three different users’ exploration
points generated for the object-pair Breadbox-Move
for the strategy GIE. Circles represent successful
interactions while crosses represent failed interactions.
The orientation of the palm of the EEF is also shown

as a vector. The figure shows that the orientation of the
EEF played a clear role in differentiating user 8 from
the rest of the users. User 8 chose a different orientation
when opening the bread box and video verifies that
user 8 had Curi’s palm facing down as opposed to up
to lift the handle.

This suggests that the demonstration from user
8 was not bad, but rather different from the other
demonstrations provided by other users. Furthermore,
we hypothesize that if there existed a subset of the
evaluation set that is similar to the demonstrations
from user 8, then the performance for that user
would increase. To understand and determine which
users were most similar to each other, we take a
simple approach of clustering all of the user’s first
demonstrations (those used to seed GIE and GBE)
using a standard unsupervised clustering algorithm k-
means.
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(a) Success; Size: 2 (b) Success; Size: 3

(c) Success; Size: 4 (d) Fail; Size: 2

(e) Fail; Size: 3 (f) Fail; Size: 4

Figure 11. Displayed are the first success and fail demonstration from each user in action space (EEF relative to object) for
different clusters sizes (2,3,4). The arrow indicates the direction the EEF palm is facing. Note: this figure will be easier to
decipher with color.
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8.2 Clustering

To cluster the demonstrations using k-means, there are
two decisions that need to be made (1) what metric to
use for distance between demonstrations and (2) the
number of clusters we expect to see. We chose to use the
Euclidean distance of the EEF position and orientation
of the palm relative to the object. This decision allows
us to focus on what the user demonstrated relative to
the object without looking at the effects generated by
the demonstration. Furthermore, Euclidean distance is
a natural metric between points in three-dimensions.
While orientation of the EEF is stored as a quaternion,
when computing the distance between demonstrations,
orientation is represented by the normalized unit vector
of the direction the palm of the EEF is facing (shown
in Figure 10).

We chose several cluster sizes and compared user
performance within clusters. As a reminder, we use
both the first successful and first unsuccessful demon-
stration from each user when generating exploration
points. We cluster successes and failures separately.
While successful demonstrations are (typically) inten-
tional, failures are not guaranteed to be intentional.
Often during the HSE, the human-user’s first failure
was a result of failing to demonstrate a successful
interaction.

We visually show which cluster the user’s first
demonstrations (successes and failures) fall into for the
object-action pair Breadbox-Move, which can be seen
in Figure 11. For clusters of size two, it seems that
orientation of the EEF plays a larger role in cluster
membership. As the cluster sizes increase, position
plays a larger role.

8.3 Clustering Performance

To verify that the difference in initial demonstrations
impacts the final performance of a user-specific model,
we hypothesize that there exists a subset of robot
interactions that are similar to the user and the
model would perform well on this subset. We generate
the user-specific test set by taking a portion of the
original test set (20% of each strategy). This subset
is determined based on the cluster membership of the
user-specific model. For example, to generate the test
set for user 1, we first determine what cluster generated
from k-means the user falls into (for both success and
fail). Then the test interactions associated with all
users in that cluster are pulled and these interactions
make up the test set for user 1. Note, this means that
the original test set does not contain any interactions
that are not associated with a specific user (i.e. only
test interactions from GIE, GBE, and HSE are used).

(a) GIE

(b) GBE

(c) HSE

Figure 12. Aggregate F1 values across users and affordances
and clusters sizes.

The aggregate performance of each user-specific
model for each object-action pair for all cluster sizes are
shown in Figure 12. The average F1 scores are shown
in comparison to the original aggregate user-specific
scores for GIE and GBE. Overall, with the exception
of Pastajar-Move, selecting a subset of the test set
based off of the user’s first demonstration was unable
to improve the performance of the user-specific models.
As expected, there does not exist a single cluster size
that is favored across object-action pairs. We believe
this is due to the inherent differences in each pair (i.e.
each pair has its own subset of unique interactions).
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Given that clustering did not work uniformly across
all object-action pairs, we only present detailed user-
specific scores for Pastajar-Move and Breadbox-Move
to understand why some aggregates went up while
others went down. This can be seen in Table 7.
Overall the models generated from HSE did not
drastically change. This is likely because HSE models
have access to all demonstrations provided within a
single user whereas GIE and GBE are limited to the
first successful and first failed demonstration. This is
amplified by users going out of their way to provide
different and interesting demonstrations for each pair
during the user study. Looking at Pastajar-Move, on
the aggregate level, clustering the test set improves
the overall performance. On an individual level, the
models that were already performing well improved
and the models that were not forming well either
dropped or didn’t change. This is seen for several users
in Breadbox-Move as well. While it is not surprising
that existing high-performing models improve when
looking a subset of interactions that are most similar to
it, it is surprising that the models that were performing
poorly, performed even worse. This suggests that there
is something else occurring within the effect space of
the affordance that we are not capturing by clustering
the EEF pose relative to the object. We explore this in
Section 8.5.

8.4 Ratio of Success and Failure

Before we look into the observation space of the learned
HMM, we look at one final metric presented in previous
results (Table 3), the ratio between successful and
unsuccessful interactions. Previously, we concluded
that overall GBE and GIE had a more balanced set
of positive vs. negative examples compared to HSE or
self-exploration. We now take a look at this ratio on a
per user basis. Results are summarized in Table 8.

Similar to Table 5, we only show the users that had
enough positive and negative interactions to build a
HMM. As mentioned earlier, we need a minimum of
3 examples of both positive and negative to build a
model. For the models that could be built, we can
look back at the detailed results in Table 5, and pull
out specific users that performed well and performed
poorly. For strategy GIE for the object-action pair
Breadbox-Move, users 2, 6, 7, and 9 outperformed user
8. We can see that user 8 has a much higher percentage
of positive executions than these other users. This is
also true for the strategy GBE, where user 8 performs
poorly compared to 2 and 6. This trend is consistent
across the rest of the pairs as well: users with a
particularly high number of success demonstrations
have models that perform poorly.

Table 8. Percentage of Positive Interactions Per User For
Strategies HSE, GIE, and GBE

Object-Action User HSE GIE GBE

Breadbox Move
User 1 0.50 0.11 0.17
User 2 0.40 0.33 0.40
User 3 0.33 0.11 0.17
User 4 0.60 0.50 0.50
User 5 0.50 0.10 0.14
User 6 0.38 0.25 0.43
User 7 0.50 0.29 0.67
User 8 0.50 0.67 0.67
User 9 0.50 0.44 0.20

User 10 0.75 0.12 0.12

Pastajar Move
User 1 0.50 0.50 0.43
User 2 0.60 0.20 0.67
User 3 0.60 0.50 0.67
User 4 0.75 N/A N/A
User 6 0.67 0.12 0.33
User 7 0.67 0.12 0.20
User 8 0.67 N/A N/A

User 10 0.75 N/A N/A

Drawer Move
User 1 0.75 0.14 0.25
User 2 0.60 0.11 0.14
User 3 0.67 0.89 0.88
User 4 0.67 N/A N/A
User 5 0.75 0.25 0.33
User 8 0.50 0.11 0.14

User 10 0.67 N/A N/A

Drawer Pick
User 3 0.50 0.10 0.14
User 4 0.33 0.33 0.67
User 5 0.50 0.33 0.67
User 6 0.50 0.12 0.20
User 7 0.67 0.22 0.67
User 8 0.50 0.14 0.20
User 9 0.67 N/A N/A

User 10 0.25 0.75 0.67

Note: Darker shading equates to higher scores and
N/A means no model could be built using the
examples (recall we need a minimum of 3 examples
each of success and failure to build models).

Digging deeper, we discovered that for some of the
models that performed poorly, they essentially classify
everything as not having the affordance, resulting
in low recall and non-existent precision values. This
indicates that when users have too many examples of
successful interactions we cannot build a good HMM
representing the expected effects of these successful
interactions. We believe this happens due to the nature
of the F/T data we are using to represent the effects
of affordances. Recall that our exploration strategies
are taking a couple of human demonstrations as seed
examples and then varying these slightly in the end-
effector space to get several new examples around the
original ones. However, even though a slight change
in position of the end-effector to the object may still
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Table 7. User Specific Classification Scores for HSE, GIE, and GBE After Clustering for Breadbox-Move and Pastajar-Move

Human Iconic Boundary

Object-Action User Precision Recall F1 Precision Recall F1 Precision Recall F1

Breadbox Move
User 1 1.00 0.02 0.04 N/A N/A N/A N/A N/A N/A
User 2 0.62 0.33 0.43 0.42 0.54 0.47 0.48 0.83 0.61
User 3 0.56 1.00 0.72 N/A N/A N/A N/A N/A N/A
User 4 0.00 0.00 0.00 N/A N/A N/A N/A N/A N/A
User 5 1.00 0.18 0.31 N/A N/A N/A N/A N/A N/A
User 6 0.66 0.95 0.78 0.67 1.00 0.80 0.80 0.64 0.71
User 7 0.86 1.00 0.92 0.88 0.96 0.92 N/A N/A N/A
User 8 1.00 0.14 0.24 0.50 0.02 0.04 0.67 0.05 0.09
User 9 0.68 1.00 0.81 0.76 0.43 0.55 N/A N/A N/A

Pastajar Move
User 1 1.00 0.15 0.27 0.83 0.77 0.80 0.85 0.85 0.85
User 2 0.80 0.62 0.70 N/A N/A N/A 0.00 0.00 0.00
User 3 0.00 0.00 0.00 0.37 1.00 0.54 1.00 0.15 0.27
User 6 N/A N/A N/A N/A N/A N/A 0.74 1.00 0.85

Note: Darker shading equates to higher scores and N/A means no model could be built using the example

result in a successful interaction (e.g. the breadbox still
moves), it can drastically change the signal seen on the
F/T plate at the robot’s wrist. Thus, a dataset that
includes a large number of successful examples is more
likely to be highly varied. It is difficult to build a model
that represents all of these different effects at once.
On the other hand datasets with a limited number of
success interactions, are more likely to only include a
single way of achieving the affordance, that is more
consistent in the sensory space and easier to model.

8.5 Affordance Effect Space

In Section 8.3 and Section 8.4 we have seen evidence
that the effect space of the object-action pairs play
large role in the quality of models built. To understand
why, we take a deeper look at the multivariate
Gaussian distribution that represent the observation
space of the learned HMMs. We choose to look at the
last state because achieving an affordance is highly
dependent on the final pose of the interaction. This
also allows us to focus on a specific snapshot in time
where the effect of the affordance is most likely to
have occurred as opposed to the entire trajectory of
the interaction.

Recall we have an 18-value feature vector that
represents the observation state-space of the HMM. To
focus on the specific dimensions that have the greatest
change in the effect space, we perform principal
component analysis (PCA) on the observation space.
Concretely, we compute the principal components of
the set of all mean values of the multivariate Gaussian
distribution for all of the generated HMMs. This
is done specific to the set of successful HMMs and
unsuccessful HMMs. This results in two transforms
- one for each set of means. We selected the

top three principal components, which account for
99.9% of variance for both sets of HMMs (successful
and unsuccessful). We compare this reduced set of
components from user models that produced good
object-action pairs vs. those who did not. As a
reminder, successful HMMs were HMMs generated
from robot trials that successfully found the affordance
whereas unsuccessful HMMs were generated from trials
that did not. Furthermore, good user models (or good
HMMs) are models that performed well at classifying
unseen interactions whereas poor user models (or poor
HMMs) did not score well in classifying new unseen
interactions.

Figure 13 shows the different principal component
values for each individual model for the object-action
pair, Drawer-Move. The green bars show the users
that had good HMMs and the red bars show users
with HMMs that performed poorly. While the means
do differ, it is unclear if this difference is enough to
account for the poor performance. As a result we do
not show the rest of the object-action pairs. When
we compare the variance of the means of the set of
good user models and poor user models (in Figure 14)
there is a clear difference in the variance of the HMMs
that do well vs. poorly. Aside from Pastajar-Move, the
poorly performing HMM models have a much larger
variance in the observation state of the HMMs. The
high performing models clearly had greater consistency
in the observational values as opposed to those from the
poorly trained models. This supports our hypothesis
in Section 8.4 that the HMMs were having difficulty
capturing a larger variety of demonstrations, whereas
those trained with a smaller set converged to a
specific and consistent observational state-space for the
HMM. For Pastajar-Move, we believe the difference
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(a) Successful HMMs

(b) Unsuccessful HMMs

Figure 13. Displayed are the top three principal components
of the final state of each user specific model for the
object-action pair Drawer-Move. The values are separated in
color by user models that performed well (green) and user
models that performed poorly (red).

in variance is not high because none of the Pastajar-
Move models themselves performed as well as the other
object-action pairs.

8.6 Qualitative Observations

We presented qualitative observations from the user
study based on anecdotes and common threads from a
single open-ended question survey administered at the
end of the user study in the previous results. Some of
the findings are repeated here because they are relevant
for providing insight on why differences arose between
users when teaching affordances.

In general, users tended to view the hour long
session as “fun” and compared getting the robot to
successfully find the affordance to puzzle solving. For
simple pairs like Pastajar-Move, users tended to get
bored quickly and many wanted to move onto the
next pair before the allotted time. The bread box
was particularly favored because it was simple enough

to provide many examples of success and failure, but
“difficult” in comparison to the pasta jar.

Users’ dislike of failure resulted in an expressed
preference to not provide examples of failure when
teaching affordances. Not surprisingly, people dislike
failure. However, it was surprising that users preferred
not to provide example of failure even when instructed
that providing negative examples of an affordance
could be beneficial. Users were allowed to discard
demonstrations and one user used this as a feature
to “test the action [they] wanted to teach [the robot]
without her recording to see if her interaction with
the object would behave as [they] expected.” Another
user reported feeling dejected that he could not get
the robot to successfully find the affordance and felt
that it was due to a lack of ability and intelligence.
Interestingly, while only a few negative examples were
provided, 6 out of 10 users reported thinking about
providing negative examples in the survey.

Another common thread in the reported teaching
strategy was the focus on providing “different ways
to achieve the same outcome” and “show[ing] the
affordance in multiple ways”. Half of the users reported
using this method in their teaching strategy. This
thread is interesting because it could account of
the difference in variance across users when showing
examples of interactions.

While users focused on providing varied and different
interactions for the same effect, The vast majority
of users did so by changing the robot’s action as
opposed to the environment. Going into the study, the
authors had believed that users would take advantage
of the fact that they could modify the environment
as opposed to reteaching actions to provide different
interactions. For example, showing a negative example
of Pastajar-Move could be achieved but just putting
the jar out of reach and this was in fact demonstrated
to all participants before the study began as part of the
tutorial on affordances. Even with this priming, users
did not use this strategy, with only one user mentioning
that they would “slowly modify the environment by
repositioning the object”. For the users that did use
reuse an action, this generated very similar interactions
since the same action is executed with a slightly
different object position.

9 Discussion

In this work, we provided an in-depth comparison
of three different approaches to affordance learning:
self-exploration, human-supervised exploration, and
a combined human-guided approach defined as self-
exploration biased by information provided from
human teachers. Prior results showed that a combined
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(a) Breadbox Move - Successful (b) Breadbox Move - Unsuccessful

(c) Drawer Move - Successful (d) Drawer Move - Unsuccessful

(e) Drawer Pick - Successful (f) Drawer Pick - Unsuccessful

(g) Pastajar Move - Successful (h) Pastajar Move - Unsuccessful

Figure 14. Shown are the comparisons of variance across the mean HMM values between good user models and poor
performing user modes for all four object-action pairs. The means are separated by successful HMMs and unsuccessful
HMMs. Poor performing user models overall have higher variance than high performing user models.

approach, GIE, can learn affordance models on par
with those generated from exhaustive SE, but using
an order of magnitude fewer interactions with the
object. The results of an individual analysis of each
user-specific model provide several interesting pieces
of insight that can guide future work for learning
affordances from naive users.

At the heart of the analysis presented in this
work is characterizing how users differ when teaching
affordances and how that impacts the performance of
their resulting models. To characterize the difference
between users, we looked at clustering individuals
based off of their demonstrations. However, while

clustering the users based off of the EEF pose clearly
showed that users provide very different approaches to
teaching an affordance, merely clustering users based
off of this was too simplistic to improve performance
across all affordances. More importantly, we discovered
that the impact of positive vs. negative interactions
plays a large role in the performance of the users. We
show that having many successful interactions causes
the performance of individual models to decrease.
Given that end-users do not intuitively provide many
examples of failure, this suggests we need to explicitly
ask users to provide more examples of failure.
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While our hypothesis suggests that we should gather
from users very similar successful interactions to model
the affordance with a low amount of data due to the
impact of F/T sensing, this is misleading because what
we really need to learn are all of the different ways
it feels like to find the affordance. This suggests that
not only do we need to gather varied interactions, but
we also need to develop new modeling techniques that
can capture the high variability due to F/T sensing
(whether that be with a different representation where
we model F/T felt with respect to the object or
generate a library of models that encompasses this
variance).

10 Future Work

While the experimental results and analysis of this
work provide concrete guidelines for generating models
from naive users for object-action pair learning, there
remains the open question on how we can use these
models for the ultimate goal of task execution using
affordances. Assuming a robot is given a task plan that
requires a series of objects with specific affordances,
the robot needs to locate objects in the room with the
candidate affordances and test these objects to see if
they can be used to perform the task. Currently, this
system only addresses the first half of the equation
where we are answering the question of “how can the
robot learn about the object efficiently”? The second
half requires the robot to apply an existing learned
model to a new object with a similar affordance and
test the object for that affordance. For this to occur,
the robot needs to generate actions from its existing
models.

While this work does not look into generation of
trajectories from learned models, future work will look
at this specific problem. In particular, as mentioned in
Section 6, we chose to model affordances using HMMs
because HMMs are generative and give us the ability
to sample from its states the parameters necessary
to create new trajectories. While the HMMs learned
in this work show great promise at modeling object-
action pairs, it is unclear whether these HMMs, which
have been optimized for classification, are suitable
for action generation. Classification favor models that
excel at finding the boundary cases of an object-action
pair. However, for the robot to generate primitive
actions, it will likely need to generate actions that
are prototypical interactions and not ones nears the
boundary.

11 Conclusion

Our work uses a Guided Exploration approach
to affordance learning with human teachers. A
previously reported experiment compared the impact
of three types of exploration on affordance learning
performance: (1) learning through self-exploration, (2)
learning from supervised examples provided by 10
näıve users, and (3) a combined approach of self-
exploration biased by user input. That work analyzed
aggregate performance of the teachers and showed
that a combined approach is the most efficient and
successful. In this article we extend prior work by
providing more analysis of the exploration algorithms
and in particular, we focus on the variance seen across
teachers in this experiment.

After considering several alternatives, we conclude
that individuals with seeds that lead to a relatively
limited set of ways to interact with the object resulted
in data that achieved a model with consistently
good recognition capabilities. By contrast, individuals
whose guided-exploration resulted in a large number
of different ways to successfully interact with the
object had poor model performance. This points out
important future work needed in novel techniques
for efficiently modeling the multi-modal sensory
information inherent in object affordances.
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