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Abstract—Our work focuses on robots to be deployed in human
environments. These robots, which will need specialized object
manipulation skills, should leverage end-users to efficiently learn
the affordances of objects in their environment. This approach
is promising because people naturally focus on showing salient
aspects of the objects [1]. We replicate prior results and build on
them to create a combination of self and supervised learning. We
present experimental results with a robot learning 5 affordances
on 4 objects using 1219 interactions. We compare three con-
ditions: (1) learning through self-exploration, (2) learning from
supervised examples provided by 10 naı̈ve users, and (3) self-
exploration biased by the user input. Our results characterize
the benefits of self and supervised affordance learning and show
that a combined approach is the most efficient and successful.

I. INTRODUCTION

Robots deployed in unstructured human environments (e.g.
homes and offices) will have to learn and model their specific
environment quickly and with minimal effort by human end-
users. Our work expedites affordance learning with robots in
new environments through a novel hybrid self-guided/human-
supervised exploration approach. The term “affordance” was
first introduced by J.J. Gibson [2]. We use the ecological
definition of “action possibilities” that appear between an
agent and the environment. We represent affordances as the
relationship between effects and a set of actions performed by
an agent on an object (commonly used in robotics [3, 4]).

We compare three approaches to affordance learning: (1) the
traditional self-exploration strategy where the robot exhaus-
tively interacts with the workspace; (2) a human-supervised
exploration strategy where a human provides example object
interactions from which the robot learns; and (3) a combined
human-guided approach that performs self-exploration biased
by information provided from human teachers. We compare
these three strategies by learning five affordances across four
different objects and show that a human-guided approach can
learn an affordance model that is as effective as exhaustive
self-exploration with an order of magnitude fewer interactions.

II. RELATED WORK

Prior work in affordance learning for robotics focused on
using primitive actions to interact with objects and learn

Fig. 1: Naı̈ve user during user study teaching “Curi” the robot that
the drawer has the open-able affordance

the mapping of effects to affordances. This established a
framework for affordance learning using exploration [5]–[10].
These works required specific primitive actions to be learned
or programmed, and did not use human input for guidance.

Many researchers are investigating how robots can explore
the world. One relevant area of research is work on intrinsic
motivation and curiosity-driven exploration. Early work [11]–
[13] looked at using rewards and expectations to guide the
exploration without any human supervision. The latest work on
intrinsic exploration from [14, 15] and [16] combined intrinsic
exploration with human input. Our work, by contrast, com-
bines both human-supervision and self-exploration. Methods
using intrinsic exploration assume the existence of an easily-
characterized reward signal, even though such reward signals
can be difficult to define for hard-to-find affordances.

Our work extends the previous work [1] in two key ways: we
apply human-supervised affordance learning to more difficult-
to-find affordances, and we investigate the combination of
human-supervision and self-exploration.

III. AFFORDANCE LEARNING

To learn affordances, an agent interacts with the environ-
ment and observes the effects of that interaction. From this,
the agent can learn what the environment affords for it. In our
case, a robot (agent) performs a set of actions A = {a1, ..,aN}
on a set of objects O = {o1, ...,oM} to model the effects that
ai can have on o j, where i = {1, ...,N}, j = {1, ...,M}, and N



and M are the number of actions and objects respectively. We
assume the effect of an object-action (o j, ai) pair is labeled
as a positive or negative example of the affordance. Thus, it
is a supervised learning problem and the resulting model can
recognize the successful interactions of an object-action pair.

In the simplest case, if the agent’s actions are discrete, it
could try all actions on all objects and model the outcomes.
However, a better method is required to efficiently sample the
infinitely large space of real-world actions the robot could
perform to manipulate an object. For example, to open a
drawer such as the one seen in Fig. 1, there are an infinite
number of directions a robot could move the drawer in before
discovering that it needs to pull the drawer towards itself in a
horizontal line. To make the object exploration tractable, we
provide the robot with a set of parameterized primitive actions.
The exploration space is then defined by the continuous-
valued parameters for each primitive action. In the instance of
the previously mentioned drawer, we reduce the open action
into three parameters (start, close, and end poses). Note that
this still results in a sample space that is infinitely large.
Thus, we present and compare five different strategies in
Sections IV and V for efficiently sampling this space to collect
the examples needed to build object-action affordance models.

A. Hardware Platform

For our experiments, we used the robot “Curi”, seen in
Fig. 1. Curi has two 7 degree-of-freedom arms, each with
an under-actuated 4 DOF hand. The arm can be controlled
by physically moving it in a gravity compensated mode, used
to kinesthetically teach the robot actions. We used the robot’s
left arm for all experiments. An ATI Mini40 Force/Torque
(F/T) sensor is mounted at each wrist, and an ASUS Xtion
Pro RGB-D sensor is mounted above the workspace.

B. Objects and Actions

We selected four household objects (Fig. 2) for the robot
to interact with. Each of these are tracked using the RGB-D
sensor throughout the interaction, from which we record visual
object information commonly used in affordance learning [1,
4] (in 3D space rather than 2D images). We record the color,
orientation, volume of the bounding box, the dimensions of
the bounding box (x,y,z), and the squareness of the object (the
ratio of the number of points in the object to the area of the
bounding box). We also store information from the 6-axis F/T
sensor in the wrist (Fx, Fy, Fz, Tx, Ty, Tz) and the robot end-
effector (EEF) position relative to the centroid of the object
point cloud. This feature vector contains 18 values: 9 (visual),
6 (F/T), and 3 (EEF) and is how we represent the effect of
object-actions pairs for the affordance learning problem.

The robot can perform two parameterized action primitives:
move and pick. Each is a sequence of EEF poses relative to the
centroid of the object point cloud. The EEF pose is the position
and orientation of the robot hand for all 6 degrees-of-freedom
(DOF). A move action has two EEF poses (start and end). The
pick action has three EEF poses (start, where Curi closes its
hand, and end). For both primitives, we generate a trajectory

(a) Bread box (b) Drawer (c) Pasta Jar (d) Lamp

Fig. 2: Objects the robot explored

TABLE I: Affordances

Object Action Effect Affordance
Breadbox Move Moves up open-able
Pasta jar Move Moves push-able
Drawer Move Moves push-able
Drawer Pick Pulls out open-able
Lamp Pick Pulls down turn-on-able

for the EEF by performing a quintic spline between the EEF
poses with an average velocity of 1 cm/second. While all poses
are needed to define the primitive action, this paper will only
modify the parameters of the final pose for each primitive
action due to the sheer number of object interactions needed
to explore the continuous-valued parameters of all poses in a
primitive action. This is a reasonable simplification since the
start pose can be initialized by putting the EEF near the object,
as is common in existing affordance work [5, 8]. For both
primitive actions in this work, the final pose has the largest
impact on successful execution (e.g. the final pose is key in
making the move action succeed in pushing an object).

C. Affordances

The five specific object-action affordances used in this
paper are summarized in Table I and seen in Figure 2. These
affordances represent a range of difficulty: simple affordances
that can be found in a large part of the action space during
exploration (e.g. push-able can be found in a various ways)
while complex affordances require interacting with the object
along a specific dimension of the action primitive space (e.g.
open-able on the drawer requires the robot to pull the object
towards itself in a particular way, representing a small subset
of the object-action exploration space).

The question we ask in this work is how to best sample the
space of our primitive actions’ continuous-valued parameters
to interact with objects and collect effective examples for
affordance modeling in a way that is efficient. We present
two baseline approaches, Self-Exploration (SE) and Human-
Supervised Exploration (HSE), and compare these to three
strategies that represent a combined approach: Guided Ag-
gregate Exploration (GAE), Guided Iconic Exploration (GIE),
and Guided Boundary Exploration (GBE). All five of these
are detailed in the following two sections.

IV. BASELINE EXPLORATION STRATEGIES

A. Self-Exploration (SE)

Typical self-exploration strategies in robot affordance learn-
ing [5, 6, 8] exhaustively sample the space of action parame-
ters. These strategies know only that it should perform actions
around the object and the main decisions needed to discretize



Algorithm 1 Self-Exploration (SE)

1: procedure COMPUTEPERMUTATION(v = [v0,v1, ...,vn])
2: Pset ← set of permutations of (x,y,z) ∀x,y,z ∈ v
3: Pset ← Pset −{(0,0,0)}
4: return Pset

5: procedure GENERATEEXPLORATION(expert dist. d)
6: α ← d +10cm
7: D1← ComputePermutation([−α , 0, α])
8: D2← ComputePermutation([−α , −α

2 , 0, α

2 , α])
9: Unique← (D1∪D2)− (D1∩D2)

10: ExploreSet← Random(Unique, 100)
11: return ExploreSet

the space of action parameters relate to (1) what range the
robot should explore around the object and (2) the resolution
(step-size) to use in sampling. We present our version of self-
exploration, SE, below (Algorithm 1).

Representing the EEF requires three variables (x,y,z) to
describe the position and three variables (rx, ry, rz) to de-
scribe the orientation in Euler space. However, in reality, it
is infeasible for the robot to perform exploration in all six
dimensions. For example, suppose we only vary the orientation
of the EEF between −90◦ and 90◦, with a step-size of 90◦

and the position between −α and α with a step-size of α .
Assume α is a constant selected to guarantee the search covers
some maximum distance needed for the EEF to have a chance
at achieving the affordance in question. Even this coarse
exploration of the action space results in 676 interactions per
EEF pose per affordance and, realistically, a higher resolution
search will most likely be needed to find the affordance.

To reduce this, we only sample the space of parameters
of the final pose of each primitive action. An expert (one of
the authors) provides a starting pose (position and orientation)
for move, and a start and close pose for pick, and these are
provided to be ideal for achieving the affordance.1 With this
assumption, SE exhaustively explores the position (x,y,z) of
the final end pose for each primitive action. We fix the final
pose orientation to be the same as the start pose. Even with
these constraints, the number of explorations generated can
still result in an impractical number of exploratory actions.
We limit the number of samples to 100 actions per object.

To generate these 100 samples, we demonstrate one suc-
cessful interaction with each object to calculate the maximum
distance (α) the EEF must travel to achieve each affordance.
To ensure this is a conservative estimate we extend the
expert demonstrated distance, d, (α = d +10cm), resulting in
the maximum distance the SE samples to create exploratory
actions. Rather than provide more information to SE about
the resolution to sample within these maximum bounds, we
adaptively split the action parameter space in half until we
reach the designated 100 samples. Thus, we start with a coarse

1We believe it is a reasonable assumption to provide the start pose, because
there exist state-of-the-art algorithms that find the best grasp/interaction points
for a wide range of objects (e.g. handle of the breadbox or chain on the lamp).

exploration of the space, and continue to sample at a higher
resolution we reach 100 samples of the action space. First,
we explore all possible permutations of the three dimensions
(x,y,z) for the discrete values: −α , 0, and α . This has 27
different permutations, but we remove the interaction where
nothing changes (0,0,0) for a total of 26 EEF poses to execute
as exploratory actions on the object, which we call D1. To
sample at a higher resolution, we split the step-size in half,
resulting in five discrete values: −α , −α

2 , 0, α

2 , and α and a
total of 125 permutations. Again, we remove (0,0,0) as well
as any actions already included in D1, resulting in 98 new EEF
poses, which we call D2. To limit each object-action pair to
100 samples, we randomly select 74 interactions from D2 to
add to the 26 interactions of D1. Together, D1 and D2 compose
the exhaustive set of interaction samples for SE.

Note, to make SE tractable, we provided the start position
and orientation of the EEF as well as the maximum distance
(α) that the EEF has to explore to find the affordance.

B. Human-Supervised Exploration (HSE)

The next baseline approach uses a human teacher to fully
supervise the collection of examples of object-action interac-
tions. Through action demonstrations, the human teacher pro-
vides various ways to explore the object to result in successful
or unsuccessful examples of the affordance. Our approach,
HSE, builds on [1], but uses more complex affordances and
generates actions in the full 6 DOF range of the robot EEF.

For HSE, we collect data from people in the campus
community who had not interacted with our robot before. They
used the same two action primitives (move and pick) that the
robot uses during SE. Users teach a move action by moving
the arm to a start pose and then an end pose, and a pick
action by moving the arm to a start, grasp, and end pose.
The robot creates an action trajectory in the same manner as
SE, by splining between the action poses. The data used for
affordance learning is collected when the robot autonomously
executes this human-taught action on the given object. This
allows the robot to record the visual and haptic sensory data
without erroneously capturing noise from user contact.

We conducted a user study with 10 participants (5 male, 5
female) from a college campus. At the start of their session,
participants were instructed briefly on the definition of affor-
dances as well as how to verbally command and move the
robot for kinesthetic teaching. For practice, they taught pick
and move on two objects, and the data was not used. Once
comfortable, we began their real data collection.

The participants taught the robot about the 5 affordances
over the 4 objects described in Table I. For each object,
they were told the specific action (move or pick) to use
and the effect to show the robot. We instructed them to
think about what strategy they might use if they were to
teach a child about that specific affordance. A single example
for affordance learning was collected each time the robot
executes the taught action autonomously. To generate multiple
affordance examples, participants could either move the object
and repeat the previous action or they could teach a new action.



TABLE II: Number Examples from Each Exploration Strategy

Object Action SE HSE GAE GIEa GBEa

Breadbox Move 100 64 31 12 9
Pasta jar Move 100 48 30 12 9
Drawer Move 100 51 31 12 9
Drawer Pick 96 41 31 12 9
Lamp Pick 100 51 N/A N/A N/A

a These are the number of examples generated for each user model,
since these approaches operate on an individual user basis.
N/A means there were not enough examples for that strategy

For the complex object-action pairs (i.e. breadbox-move,
drawer-pick, and lamp-pick), participants were given 10 min-
utes to provide examples to the robot. For the simple pairs
(pasta jar-move and drawer-move), they were given 5 minutes.
The motivation for this difference was based on pilot studies.
For simple affordances, users quickly developed strategies for
teaching, whereas complex affordances required more time
and trials for the user to develop a strategy to get the robot to
perform the desired user action. The selected time constraints
facilitate the collection of several interactions of each affor-
dance and limit each study to within an hour, thus preventing
user fatigue. To control for ordering effects in the data, we
counter-balanced the order in which the five affordances were
taught across users. At the end of the experiment, participants
answered a single open-ended survey question that asked them
about their teaching strategy. The total number of affordance
examples collected across all 10 users can be seen in Table II.

V. GUIDED EXPLORATION STRATEGIES

While users provide key information and useful examples
of affordances, it is cumbersome to have people provide
an exhaustive set of examples for each affordance. During
self-exploration, the robot can easily generate an exhaustive
search, but has no real concept of where to focus that search.
Combining the strengths of both approaches should yield the
best of both worlds. Our primary research question is how to
effectively bias SE with information from human teachers. In
this section, we present three novel strategies that differ in
how they integrate teacher input for exploration.

A. Guided Aggregate Exploration (GAE)

Our first approach, GAE (Algorithm 2), takes an aggregate
view of the guidance that people provided from HSE. For each
affordance, we build a new set of samples in the action space
based on the mean and variance of the final EEF position
of each first action shown by the ten people in our study.
More concretely, let pn be the final EEF pose from the first
demonstration by user n. Now we define P( j,i) as the set of
final EEF positions from all users’ first demonstrations for
an affordance pair (o j,ai): P( j,i) = {p1...pn} for n = 1...10.
We compute the mean (µ ji) and variance (σ2

ji) of P( j,i), which
represents an aggregate of the human provided input, and use
them to generate new sample points in the action space. Note
that each value contains three numbers (for each axis).

During SE, we sampled the final position of the EEF by
adaptively splitting the action space about the starting position
using an expert defined α . In GAE, we instead replace α with

Algorithm 2 Guided Aggregate Exploration (GAE)

1: α ← expert demo dist. +10cm
2: p( j,i)←{p1...pn} for n = 1...10
3: µ ji = mean(p( j,i))
4: σ2

ji = variance(p( j,i))
5: ~rchange← µ ji−EEFstart position

6: ~echange←
~rchange
||~rchange||2

7:
8: procedure GENERATEEXPLORATION
9: exploreRegions = [µ ji, µ ji +σ2

ji, µ ji−σ2
ji]

10: ExploreSet← ComputePermutation(exploreRegions)
11: c← 1
12: ~pchange← (0,0,0)
13: while ‖~pchange‖< α do
14: ~pchange =~echange ∗ c∗α

15: ExploreSet← ExploreSet ∪{~pchange}
16: c++

return ExploreSet

the computed σ2
ji and center the sampling of the final position

of the EEF using µ ji. This generates an action primitive that
starts at the same position defined by the expert and ends using
all permutations of the three dimensions (x,y,z) for the discrete
values: µ ji +σ2

ji, µ ji, and µ ji−σ2
ji. For each affordance, we

have 27 sample locations and use the same EEF orientation
used during SE. This strategy explores along the dimensions
(x,y,z) of high variance, which are locations in the action
space where the affordance can be discovered in a variety of
positions. It also constrains the exploration in dimensions of
low variance as these are important to finding the affordance.

Additionally, while collecting the SE interactions, we no-
ticed that each affordance had a direction of change. For
example, the open-able drawer affordance, requires moving
the EEF perpendicular to the drawer towards itself and the
open-able breadbox at an angle away from itself. To focus
the exploration along this direction of change (~echange), we
do an additional sampling of the EFF action space along this
dimension. The ~echange is actually the unit vector between the
start (or close) and end positions of the EEF in the action
primitive. We scale ~echange by different magnitudes and use
the resulting vector as the position in the final EEF pose.

To compute ~echange, we subtract and normalize the expert
selected starting position from µ ji. For consistency, we use
the same resolution from SE (α) as the base increments to
the magnitude. Precisely, ~echange = ~rchange

||~rchange||2
where ~rchange =

µ ji−EEFstart position and the final EEF position is~echange ∗c∗α

where c = {1...C}. C is the max number of times we can
increase the magnitude by before we reach the max explo-
ration distance allowed (set in SE: α). This results in 3 new
interactions for pasta jar-move and 4 for all other affordances.

B. Guided Iconic Exploration (GIE)

Our next approach, GIE (Algorithm 3), uses each human
teacher’s input individually to bias the exploration of the action
space rather than relying on the aggregate of several teachers.



Algorithm 3 Guided Iconic Exploration (GIE)

1: S← EEF position of final pose in an(S)
2: F ← EEF position of final pose in an(F)
3: ~rSF ← (F−S)
4: procedure GENERATEEXPLORATION
5: ExploreSet← []
6: for p in [S,F] do
7: ExploreSet← ExploreSet∪{[px±‖~rSF‖2, py, pz]}
8: ExploreSet← ExploreSet∪{[px, py±‖~rSF‖2, pz]}
9: ExploreSet← ExploreSet∪{[px, py, pz±‖~rSF‖2]}

10: return ExploreSet

Specifically, we use only two samples (the first successful
an(S) and the first failed an(F) interaction) from user n to
generate a new set of samples. We select an(S) and an(F)
because this provides crucial information on the location of the
boundary between affordance success and failure in the action
space. Furthermore, selecting an(S) and an(F) allows us to
determine the viability of having a user provide two samples
of the space and having the robot take over afterwards.

We define~rSF to be the vector extending from S to F , where
S is the position (3D) of the EEF in the final pose of an(S),
and F is the final position of the EFF in an(F). The L2 norm
of~rSF provides a crucial piece of information that, during SE,
we had to get from an expert: the exploration resolution the
robot should use to achieve the affordance. We can look for
the iconic or prototypical examples of successful and failed
interactions by adding and subtracting ||~rSF ||2 from the final
pose of the EEF in the action primitive provided by the user
in all dimensions (x, y, z). This results in 6 final EEF poses
for an(S) and 6 final EEF poses for an(F) for a total of 12
final EEF poses. Each of the computed final EEF poses are
used to generate primitive actions by replacing the final EEF
pose of the primitive action provided by the user.

Note that all poses in the primitive action are generated
from the user provided sample. Therefore, not only are we
inferring the resolution of the search space with ||~rSF ||2, but
we also no longer need an expert to define the start or close
pose of the EEF primitive action. This is particularly important
for instances where the a robot manipulator is not standard or
easily modeled, or the object handle is not visually distinct.

C. Guided Boundary Exploration (GBE)

In GIE, we inferred the boundary between success and
fail in the action space by concentrating the new action
samples around an(S) and an(F). Now we introduce GBE
(Algorithm 4), which explicitly samples along the boundary.
This strategy also uses two action samples (an(S) and an(F))
from each user, and S, F , and ~rSF are the same as before.

To generate the boundary between success and failure in
the action space, we use the midpoint between S and F ,
and coarsely generate multiple vectors circling the midpoint.
Specifically, we take ~rSF

2 and translate it to the position halfway
between S and F . We rotate this new vector about each axis

Algorithm 4 Guided Boundary Exploration (GBE)

1: S← EEF position of final pose in an(S)
2: F ← EEF position of final pose in an(F)
3: ~rSF ← (F−S)
4: procedure GENERATEEXPLORATION
5: ExploreSet← []
6: for θ in [−π

2 ,
π

2 ,π] do
7: ExploreSet← ExploreSet ∪{rotateX(S+ ~rSF

2 ,θ)}
8: ExploreSet← ExploreSet ∪{rotateY (S+ ~rSF

2 ,θ)}
9: ExploreSet← ExploreSet ∪{rotateZ(S+ ~rSF

2 ,θ)}
10: return ExploreSet

(x, y, z) for the angles π

2 , - π

2 , and π . We hypothesize that one
of these vectors is the real boundary for the action space.

GBE generates 9 different final EEF poses in the action
space (3 for each axis) that try to find the boundary between
the successful and failed affordance interactions. Similar to
GIE, we generate each sample by replacing the EEF position
in the final EEF pose in an(S). Note that since we are using
the vector from S to F , we only use an(S) and not an(F). Just
like GIE, we no longer need an expert for the start pose, close
pose, or orientation of the actions primitives.

VI. AFFORDANCE MODELING

We used all five exploration strategies to select actions for
the robot to execute to collect example object interactions for
all 5 affordances. In total, the robot executed 1219 interactions
with the environment (SE (496), HSE (255), GAE (123), GIE
and GBE (345)2).

Each interaction was hand labeled as “Success” or “Failure”
depending on whether or not the object interaction achieved
the affordance. We used the following cutoffs for “Success”:
• Breadbox (open-able) - the breadbox had to be com-

pletely open. Any interactions where the robot only
opened the box partially is a failure.

• Pasta jar (push-able) - the jar is pushed any distance
without tipping.

• Drawer (push-able) - the drawer is pushed any distance.
• Drawer (open-able) - the robot has to pull the drawer

out greater than or equal to 5.5 inches (the halfway point)
• Lamp (turn-on-able) - the robot has to turn on the lamp

without causing the lamp to tip/wobble
To compare the five search strategies, we attempt to train 32

separate models for each affordance using the collected data;
2 for strategies that used the holistic approach to search (SE
= 1, GAE = 1) and 30 models from the strategies that build a
model per user (HSE = 10, GIE = 10, GBE = 10).

A. Model Representation

We represent each affordance using two Hidden Markov
Models (HMMs) [17], where one model is built from success-

2GIE and GBE often explored similar locations around the object. As a
result, we collected GIE and GBE as a single set and removed similar inter-
actions using a 2cm threshold for position and 45◦ threshold for orientation.



ful interactions and one model is built from failed interactions.
We build two models so that during classification, we can com-
pute the log likelihood (a representation of the probability) of
an interaction occurring for both models and select the model
label that has the higher likelihood. Using relative likelihood
avoids tuning a likelihood threshold for each affordance.

We selected HMMs because of the time-varying nature of
the interaction. Furthermore, using a generative model that
contains information about the EEF trajectory may allow us
to generate actions for exploring new objects in future work.
The trained HMMs are ergodic (all states are reachable from
all other states) and the parameters of the n-state HMM
(A,B,π), are learned using Expectation Maximization (EM),
where A is the transition probability distribution (nxn), B the
emission probability distributions (nx1), and π the initial state
probability vector (nx1). B is modeled using a continuous
multivariate Gaussian distribution. The observation state-space
O is composed of visual information, F/T information, and
EEF relative to the object as described in Sec. III-B. To
select the number of states n for each HMM, we performed
5-fold cross-validation within the training set described in
Section VI-B. For our implementation, we used the python
machine learning library scikit-learn [18].

B. Training and Testing

We split the data collected from each strategy into two
sets: train and test. The train set for each strategy contains
a randomly selected 80% of the samples from that strategy.
The test set is comprised by merging the remaining 20% of the
samples from each of the strategies. This results in a test set
that contains examples from all strategies. Thus, each strategy
trains using 80% of its own sample set, but is tested on a
common test set that contains samples from all strategies. We
evaluated the affordance models using standard metrics for
binary classification of precision, recall, and F1 score such
that precision = tp

tp+fp ; recall = tp
tp+fn ; and F1 = 2 · precision · recall

precision+ recall
where t p is the number of true positives, f p false positives, tn
true negatives, and f n false negatives. Precision is a measure
of quality (e.g. how accurate is the model when it does label
an interaction with the drawer as open-able?) and recall is
a measure of completeness (e.g. of all interactions with the
drawer, did the model miss any instances of open-able?).

VII. RESULTS

In this section we present (1) a characterization of the action
space coverage achieved by each exploration strategy (2) the
classification performance of the models for each strategy, and
(3) qualitative results from the user study survey question.

A. Exploration Coverage

We first compare the exploration strategies by the total num-
ber and percentage of interactions that successfully achieve the
affordances. Seen in Table II, the different strategies result
in dramatically different number of samples. HSE resulted
in around 5 samples per affordance, whereas SE had 100
samples. By design, all of the Guided strategies fall somewhere

TABLE III: Percentage of Positive Interactions Per Strategy

Object-Action SE HSEa GAE GIEa GBEa

Breadbox-Move 8% 50% 39% 35% 42%
Pasta Jar-Move 44% 77% 93% 34% 33%
Drawer-Move 43% 78% 100% 28% 36%
Drawer-Pick 18% 38% 74% 33% 44%
Lamp-Pick 2% 4% N/A N/A N/A

a Values are averaged across each user
Note: Darker shading denotes higher scores and N/A means there
were not enough examples for that strategy

TABLE IV: Classification Scores on All Exploration Strategies

Aff. Strategy n Precision Recall F1 Score

Breadbox
Move

SE 1 0.73 0.78 0.75
HSEa 10 0.69±0.28 0.48±0.42 0.45±0.34
GAE 1 0.75 0.53 0.62
GIEa 5 0.75±0.05 0.62±0.35 0.60±0.27
GBEa 3 0.81±0.08 0.53±0.31 0.57±0.24

Pastajar
Move

SE 1 0.54 0.97 0.70
HSEa 3 0.90±0.14 0.23±0.24 0.29±0.25
GAE 0 N/A N/A N/A
GIEa 2 0.65±0.12 0.80±0.20 0.69±0.01
GBEa 4 0.53±0.36 0.45±0.40 0.39±0.28

Drawer
Move

SE 1 1.00 0.35 0.52
HSEa 3 0.40±0.43 0.06±0.06 0.08±0.07
GAE 0 N/A N/A N/A
GIEa 1 0.51±0.00 0.88±0.00 0.65±0.00
GBEa 1 0.50±0.00 0.56±0.00 0.53±0.00

Drawer
Pick

SE 1 0.66 0.93 0.77
HSEa 4 0.66±0.41 0.26±0.42 0.22±0.33
GAE. 1 0.69 0.93 0.79
GIEa 3 0.68±0.01 0.90±0.07 0.77±0.02
GBEa 2 1.00±0.00 0.06±0.03 0.10±0.06

a Reported values are averaged across the n user or user-biased models.
Note: Darker shading equates to higher scores and N/A means no model could
be built using the example

between these two extremes. In prior work [1] it was shown
that self exploration resulted in mostly negative examples, and
their conclusion was that human teachers are good at showing
the robot salient positive instances of object affordances. Our
data also supports this conclusion. Table III shows the per-
centage of successful interactions per affordance. The human
teachers (HSE) in our study showed a heavy bias for positive
examples, with three of the five affordances having at least
half successful examples. This positive bias carries over to the
GAE strategy. In terms of coverage of the affordance space,
GIE and GBE achieved what we wanted. Biasing SE with
supervised examples results in a small number of samples (12
or 9 compared to 100) that have more positive examples than
the SE strategy, and more negative examples than HSE.

For the Lamp-Pick affordance, only one of ten users and two
SE interactions were able to complete the action successfully.
To train and test a success HMM, we need a minimum of
three successful interactions, otherwise the Guided exploration
strategies cannot be generated. Thus we exclude Lamp-Pick
in the rest of the results. Furthermore, given the limited data
from human teachers, some users did not provide sufficient
data to build both HMM models (i.e. min of 3 positive and
3 negative), and in some cases this carried over to the user-
biased data sets as well. Column n in Table IV indicates the
number of HSE or Guided strategies with sufficient data to
build the affordance HMM model.



(a) Self-Exploration (SE) (b) Human-Supervised Exploration (HSE) (c) Guided Aggregate Exploration (GAE)

(d) Guided Iconic Exploration (GIE) (e) Guided Boundary Exploration (GBE)

Fig. 3: The action space (EEF relative to the object) for all five strategies for the affordance Breadbox-Move. Successful
interactions are circles and failed interactions crosses. Note: 3b, 3d, and 3e are aggregates over all of the user models.

Coverage can also be evaluated by the physical space the
EEF explored and can be visualized by plotting the final
position of the EEF relative to the object for successful and
failed executions. Fig. 3 shows an example visualizing all
five strategies for the object-action pair Breadbox-Move. The
successful interactions have a high dependency on the x- and
z-axis. This makes sense as the EEF must lift the handle away
from itself to open the breadbox. In SE, we can see the grid
structure of the exhaustive strategy and the large coverage
of the action space. The explorations for HSE are highly
concentrated and fixated on nearly the same locations in the
space. GAE finds examples of successful and failed executions
for Breadbox-Move (reflected in Table III), but without a clear
action space boundary as in GIE and GBE. GBE examples
span a wider range in the action space than GIE.

B. Model Performance

The performance of the models built from each strategy is
shown in Table IV. HSE has the worst performance. This could
be due to the fact that overall, users tended to overly focus
on positive interactions and that these models were built from
the least amount of data (5 examples compared to 9, 12, 30 or
100). These results support our hypothesis that the limited data
we can collect from a person in 5-10 minutes of interaction
is not sufficient to build models on par with exhaustive self-
exploration consisting of 100 interactions with an object.

Next we turn to the question of whether or not the Guided
strategies can help bridge this performance gap between SE

and HSE. Our results show that both GIE and GAE achieve
higher performance than GBE and approach the performance
of SE with significantly less data. GIE outperforms GAE in
two ways: (1) across the four affordances, GAE only generates
2 working affordance models (due to the focus on successful
examples) whereas GIE generated 11 (seen in column n in
Table IV) and (2) GIE is likely to be the more practical
approach compared to GAE since it can be used with a single
individual as opposed to requiring data from multiple teachers.

Surprisingly, the simple affordances (Pastajar-Move &
Drawer-Move) performed worse on average across the strate-
gies than the complex affordances. The only exception is
GIE for Pastajar-Move, which slightly outperforms Breadbox-
Move. One possibility for the discrepancy between these
affordances could be related to how affordances are not really
on a binary spectrum, but rather there are varying levels (e.g.
slightly push-able vs. very push-able). This suggests that the
task should be a regression task where we label the affordances
with values (e.g. 1cm vs. 5cm). In our case, we set hard
cutoffs for judging the success of each affordance. Successful
interactions were more obvious for complex tasks (e.g. drawer
or breadbox fully opening) compared to simple tasks (e.g.
shifting the pasta jar or drawer 10 cm vs. 1 cm across the
table; both of which were considered successful interactions).

Finally, it is important to note the high variance for ex-
ploration strategies that generated models per user. While the
average GIE performance is similar to SE, many individual
models achieved performance that surpassed the SE models,



with an order of magnitude fewer examples. This shows that
certain users provided better examples than others, and future
work is to understand how to accomplish this with all users.

C. Qualitative Observations

There were a few interesting anecdotes and common threads
from the survey administered at the end of the user study. In
general, users tended to view the hour long session as “fun”
and compared getting the robot to successfully find the affor-
dance to puzzle solving. For simple affordances like Pastajar-
Move, users tended to get bored quickly and many wanted to
move onto the next affordance before the allotted time. Users’
dislike of failure resulted in an expressed preference to not
provide examples of failure when teaching affordances. Users
were allowed to discard demonstrations and one user used
this as a feature to “test the action [they] wanted to teach
[the robot] without her recording to see if her interaction with
the object would behave as [they] expected.” Another user
reported feeling dejected that he could not get the robot to
successfully find the affordance and felt that it was due to a
lack of ability and intelligence. Interestingly, while only a few
negative examples were provided, 6 out of 10 users reported
thinking about providing negative examples in the survey.

VIII. FUTURE WORK

To evaluate the quality of the affordance model, we used a
binary classification task (i.e. did the interaction find the affor-
dance?). While a commonly used metric, this will favor models
that excel at finding the boundary cases of an affordance
because the best examples to train the models are the ones
that can help determine the separating line between success
and failure. However, for the robot to use the learned model
on novel objects, it will likely need to generate trajectories that
are prototypical interactions and not ones near the boundary.
Future work will investigate if the models that performed well
for monitoring can perform well for trajectory generation on
novel objects.

While on average the GIE strategy performed comparably
with SE, the variance of the scores showed that certain
user models did better than others. Future work will look at
understanding what exactly a user needs to provide to build
a robust affordance model. One hypothesis is that the type of
failed interaction might have a strong impact on the explo-
ration space. For example, while many users provided failed
explorations unintentionally, others consciously provided an
example of not finding the affordance.

IX. CONCLUSION

This paper compared three different approaches to af-
fordance learning: self-exploration, human-supervised explo-
ration, and a combined human-guided approach that performs
self-exploration biased by information provided from human
teachers. We outline two specific implementations of existing
self and human-supervised approaches (SE and HSE) and
introduced three novel combination strategies: GAE, GIE, and
GBE. We compared these affordance exploration strategies by

learning five affordances across four objects, resulting in 1219
robot executions. Our results show the combined approach,
GIE, can learn affordance models that perform on par with
those generated from exhaustive SE, but using an order of
magnitude fewer interactions with the object.
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