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Abstract— In this paper, we present a system for learning
haptic affordance models of complex manipulation skills. The
goal of a haptic affordance model is to better complete tasks by
characterizing what a particular object-action pair feels like.
We use learning from demonstration to provide the robot with
an example of a successful interaction with a given object.
We then use environmental scaffolding to collect grounded
examples (successes and unsuccessful “near misses”) of the
haptic data for the object-action pair, using a force/torque (F/T)
sensor mounted at the wrist. From this we build one success
Hidden Markov Model (HMM) and one “near-miss” HMM
for each object-action pair. We evaluate this approach with
five different actions over seven different objects to learn two
specific affordances (open-able and scoop-able). We show that
by building a library of object-action pairs for each affordance,
we can successfully monitor a trajectory of haptic data to
determine if the robot finds an affordance. This is supported
through cross-validation on the object-action pairs, with four
of the seven object-action pairs achieving a perfect F1 score,
and with leave-one-object-out testing, where the learned object-
actions models correctly identify the specific affordance with an
average accuracy of 67% for scoop-able and 53% for open-able.

I. INTRODUCTION

Robots are moving from structured environments (e.g.
factories) to unstructured human environments (e.g. hospitals
and homes). Our work focuses on learning affordance mod-
els for the dexterous manipulation skills required by these
robots. The term Affordance was coined by psychologist J.J.
Gibson, referring to the “action possibilities” between the
environment and the agent [1]. Affordances are a represen-
tational choice to model skills as the relationship between ef-
fects and a set of actions performed by an agent on an object.
For example, pulling (action) a drawer handle and causing
the drawer to slide out (effect) would be the affordance open-
able. This representation (and other versions) is commonly
used in affordance learning in robotics [2, 3]. Affordances
enable us to communicate object properties and tasks to the
robot (e.g. to water a plant, a robot can reason that it needs
an object with a contain-able and pour-able affordance).

In this paper, we investigate: (1) learning the object-action
pairs for a specific affordance, and (2) using these learned
models to test an object for that affordance. We define skills
as a low-level trajectory that achieves a specific goal and
model each skill as an object-action pair. Affordances consist
of several object-action pairs, detailed in Section III.

While most prior work in affordance learning focuses
on visual affordances, our work addresses haptic models
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Fig. 1: Our experimental platform, Curi, with the various objects
it learns affordances for in this paper.

of affordances – what successful and unsuccessful interac-
tions of a object-action pair feel like. We perceive these
affordances using force/torque (F/T) sensors. The haptic
model of an object-action pair is complementary to visual
affordances. While both require acting on the object to learn
an affordance, a learned visual affordance can be used to
select “action possibilities” prior to interacting with the
object; whereas haptic models can only provide information
on possibilities during the interaction. Furthermore, some
affordances are visually difficult to detect, but are salient
through force sensing (e.g. push/pull door handle). Together,
they can provide a richer set of possibilities for the robot to
find and utilize. This work focuses on modeling affordances
with just F/T sensing as opposed to using F/T sensing
as an additional channel in a multimodal feature vector.
Understanding the role of haptics alone is a key step along
the way to an integrated multimodal affordance model.

To model haptic affordances, the robot must successfully
execute actions on objects. Our work explores an approach
that leverages a human teacher to assist the robot in rapidly
exploring a variety of objects to learn haptic affordances.
This system uses learning from demonstration (LfD) to
acquire primitives for exploration, and environmental scaf-
folding to guide the robot’s exploration. We use this system
to perform 5 different actions over 7 different objects to build
object-action models for the haptic affordances of ”open-
able” and ”scoop-able”. We show that the learned object-
action models achieve good cross-validation performance
with 4 of the 7 object-action pairs achieving a perfect F1
score. Also, by leveraging the set of object-action models
per affordance, we perform leave-one-object-out testing to
identify affordances with an average accuracy of 67% for
scoop-able and 53% for open-able, with haptic sensing alone.



Fig. 2: Components and information flow of the system. Action Acquisition builds an action trajectory from human
demonstration. In Human-Guided Exploration, environmental scaffolding yields successful and “near-miss” interactions.
This data is then used during Affordance Modeling to build a set of generative object-action models where in Affordance
Testing, they are used to determine if an object has an affordance.

This paper contributes a system that (1) uses a human
teacher to both rapidly acquire actions and explore objects
for learning affordances and (2) uses only haptic sensing to
identify multiple affordances on unseen objects.

II. RELATED WORK

To the best of our knowledge, no other work learns multi-
ple affordances from human teachers using only F/T sensing.
Related areas include affordance learning with visual infor-
mation, haptic modeling, and skill acquisition/monitoring.

A. Affordances

Early work in affordance learning for robotics used prim-
itive actions to interact and learn about object effects. These
established a framework for affordance learning using ex-
ploration [3]–[8]. While some of these works included pro-
prioceptive information, none used only haptic information.
All of these systems required specific primitive actions to be
learned or programmed, which resulted in works focusing
on a small set of possible actions (e.g. pushing) to find
affordances as opposed to a wide range of actions that can
be learned by seeding exploratory behaviors with LfD.

B. Haptic Modeling

While haptic affordance learning has not been specifi-
cally addressed, haptics has been used to learn and test
object properties similar to how one would test an object
for an affordance. Torres-Jara et al. [9] and Sinapov et
al. [10] used exploratory behaviors to classify objects. Fishel
and Loeb [11] identified 117 different textures based on
nine primitive motions. Gemici and Saxena [12] catego-
rized deformable foods using force sensing. Chu et al. [13]
learned haptic adjectives through exploration. Bhattacharjee
et al. [14, 15] used a robotic arm with a tactile sleeve to
categorize contacted objects as movable or not. While these
works use haptic information to obtain object properties, [13]
and [12] do not directly learn how to use these properties
once found and [14, 15] only learned one affordance.

C. Skill Acquisition and Monitoring

Sukhoy et al. [16] learned the trajectory for sliding a
card through a card reader with proprioceptive feedback.
Sturm et al. [17] learned a kinematic model for successfully

opening various doors using a F/T sensor. While both only
learned one primitive, they show that haptics could be used
to improve actions directly through experience. Pastor et
al. [18] learned and predicted the outcome of complex
skills (e.g. flipping a box with chopsticks) by using pres-
sure sensors and reinforcement learning on dynamic motion
primitives. They extended [18] and introduced Associative
Skill Memories [19] where they learned haptic feedback from
demonstration of actions on objects. However, they did not
learn and discover haptic affordances or properties of an
object. Recently, researchers have begun exploring how to
model force and compliant dependent skills using LfD [20,
21]. The focus, however, is on executing the specific skill
and not on using trajectories to explore the environment.

III. APPROACH: LEARNING HAPTIC AFFORDANCES

To learn haptic affordances, a robot must successfully
interact with objects and build a model of the interaction.
Our approach has four components, also shown in Fig. 2.

(1) Action Acquisition: We use LfD to show the robot
an exploration action to perform (Fig. 3). LfD for affordance
learning is one novelty of our work and allows us to quickly
program several primitive actions. Most prior work use one
or two simple primitives (e.g. push is popular), whereas here
we have five primitive actions with a range of complexity.

(2) Human-Guided Exploration: Next, the robot repeats
the demonstrated action several times. For each interaction,
the human moves the object to perturb the action context
slightly (Fig. 4c). This is a teaching interaction known as
environmental scaffolding [22]. In similar prior work [8],
human-guided exploration yielded high-quality learning ex-
amples that provided focus for exploration within a very large
search space. An alternative to scaffolding is to utilize self-
exploration [23] and this is an area of recent work [24].

(3) Affordance Modeling: Each interaction during the
exploration phase generates a continuous trajectory from a
F/T sensor at the wrist. We use these trajectories to build
an HMM (Section VII) of the haptic effect of this object-
action pair. We build two HMM models for a given object-
action pair, one HMM from examples of successful interac-
tions and another HMM from examples where the object-
action execution failed to find the affordance. In our human-
guided exploration, we assume unsuccessful interactions are



(a) “Start here” (b) “Close your hand”

(c) “Go here” (d) “End here”

Fig. 3: Kinesthetic LfD for the open-able affordance on the
pasta jar using keyframes. Keyframes are recorded using
verbal commands listed below each image.

informative “near-misses” of the action, hence this model is
characterizing what it feels like when this object-action pair
does not find the desired effect. Importantly, this is not a
model of all failures, which would be a huge class, but of the
much smaller and likely more informative class of boundary
case failures that are close in action space to success [25,
26] (e.g. a lid slipping from the hand when lifting seen in
Fig. 4b). Furthermore, modeling “near-misses” can provide
knowledge to detect when a trajectory begins to deviate from
success and adapt in real-time (future work). It is unclear how
this can be done with a single model of all possible failures.

These object-action pairs, each containing a success HMM
and “near-miss” HMM, provide several specific examples
of a single affordance. This representation allows the robot
to not only learn what an affordance feels like, but also
provides a library of actions for different ways in which the
affordance has been achieved. For instance, there are multiple
ways for an object to be open-able (e.g. open a drawer by
pulling, open a jar by twisting the top) and by modeling each
of these methods, the robot now has access to a library of
actions to explore a new object to find the affordance.

(4) Affordance Testing: The learned models are used
to test for an affordance by monitoring the effect of the
execution of each object-action pair for that affordance. A
benefit of modeling both success and “near-miss” is that
the decision per object-action pair can be made by relative
likelihood between these two models. Given that we have
multiple object-action pairs per affordance, the robot can
use any/all combinations of object-action pairs previously
learned (e.g. comparing the log-likelihood from all HMMs)
to determine if an object has an affordance.

The remainder of the paper, following the details of
our robot platform, is focused on our implementation
and validation of each of the four main components
mentioned above. Videos of the system and experiments

(a) Approach lid (b) “Near-miss”

(c) Change environment (d) Success

Fig. 4: Curi executing demonstrated trajectory on the pasta
jar. (b) Curi misses the first time, (c) a person adjusts the
object, and (d) Curi succeeds

can be found at https://www.youtube.com/user/
SimonTheSocialRobot.

IV. HARDWARE PLATFORM

Our robot platform, called “Curi”, has two 7 degree-of-
freedom (DOF) arms, each with an under-actuated 4-DOF
hand, and an ATI Mini40 force/torque (F/T) sensor attached
to each wrist. The experiments in this paper utilize just the
left arm, which is currently the only fully-functional arm.
Curi has a movable torso mounted on a mobile base. In this
work, Curi is positioned in front of a table with an object
on it (Fig. 1). Above the table is a ASUS Xtion Pro RGB-D
sensor. We segment the objects on the table using the point
cloud data. The object’s pose (position and orientation) and
bounding box are recorded.1

V. LFD ACTION ACQUISITION

In our approach, a teacher provides a demonstration of
an action by physically guiding the robot to perform it (as
opposed to observations of a human performing the action).
This highlights a key point that affordances are “action possi-
bilities” that occur between the agent and the environment.
There are likely many objects that have affordances for a
person that our robot would be unable to achieve (e.g. jar
is closed too tightly for the robot to open). Particularly for
haptic affordances, it is essential that the robot successfully
explore the environment to learn what the effects of particular
object-action pair feel like to the robot.

We use a keyframe-based LfD approach [27], whereby a
teacher demonstrates each action by physically guiding Curi
and marking salient points of the action (Fig. 3). During
these points, snapshots of the joint states are stored as
keyframes (KFs). To replay a demonstration, the KFs are

1While the visual data is not used in this work, we record it to allow for
future integration with systems using visual affordance learning.



TABLE I: Affordances

Object Action Effect Affordance
Cup 1 Scoop Macaroni in container scoop-able
Cup 2 Scoop Macaroni in container scoop-able

Parmesan Bottle Scoop Macaroni in container scoop-able
Pasta Jar Lift Cap Lifts open-able
Drawer Pull Drawer slides open-able

Wooden Box Push1 Lid opens open-able
Bread Box Push2 Lid opens open-able

splined together into a single trajectory using a quintic spline
at an average velocity of 0.1 radians/second. The velocity
was pre-selected to execute smoothly on Curi and applies
for all actions. Curi executes the trajectory autonomously
on the object during playback (Fig. 4). This guarantees no
external F/Ts are felt during data recording.

We taught Curi two affordances (scoop-able and open-
able), which results in five separate actions to interact with
seven different objects. The actions range in complexity
starting with simple actions that can be easily executed by
the robot (e.g. pushing) to more realistic actions on objects
that can be found in homes (e.g. scooping pasta, opening
drawers). The first action is on the objects shown in Fig. 5,
where the same scooping motion is repeated using three
different, but similar objects. We then increase the difficulty
of the task by selecting an affordance that require four
different actions over varying objects. The set of objects
shown in Fig. 6 are all open-able, but require different low-
level actions. The object-action pairs are listed in Table I. To
increase the stability of some of the lighter objects during
interaction, Curi’s non-functional right arm was propped up
and the weight of the arm prevented the objects from sliding.
This was done for the objects Pasta Jar, Wooden Box, and
the bowl of macaroni during all of the scoop actions.

VI. HUMAN-GUIDED EXPLORATION

Next we collect a dataset of haptic information during
object-action interactions for each of the seven object-action
pairs described in Table I. Each action was executed by the
robot 20 times on the same object, such that 10 interactions
successfully found the affordance on the object and 10 were
unsuccessful “near-misses”. This was done by moving the
object around by the human2 and hand labeling when the
interaction did or did not find the affordance. As “near-
misses” occur naturally when executing a skill, overall extra
interactions were not necessary to achieve an even split
of successful and “near-miss” examples. For the open-able
affordance, “near-misses” often included interactions where
Curi missed the handle or lid of the object. For the object-
action pairs in the scoop-able affordance, “near-misses” were
instances where the cup dragged along the macaroni, but did
not get any macaroni in the cup. During each interaction, the
robot records: F/T data from the wrist sensors (example in
Fig. 7), object pose information, and all joint positions.

As mentioned previously, in some cases, it is visually very
difficult to see when these actions find the affordance and

2in this work, the teacher is one of the authors

Fig. 5: Scoop-able objects: Left-to-right - Bowl of macaroni,
Cup 1, Cup 2, Parmesan Bottle

Fig. 6: Open-able objects: Left-to-right - Pasta Jar, Drawer,
Wooden Box, Bread Box

could easily fall within the noise of a RGB-D sensor. For
example, it was difficult for even the experimenter (one of
the authors) to detect the change in amount of macaroni
in the large bowl and in the cup. This suggests that using
haptic feedback during action execution is important to fully
understand the objects and object affordances.

VII. LEARNING HAPTIC AFFORDANCE MODELS

With the data collected, we build two haptic models
(success and “near-miss”) for each of the seven object-action
pairs. This results in two different haptic affordance models:
one for open-able and one for scoop-able.

A. Hidden Markov Models

We use Hidden Markov Models (HMMs) [28] to model
the F/T information because of the time-varying nature of
the data and because it provides us the ability in future
work to generate expected F/T trajectories of an action by
sampling from the HMMs. The HMMs are ergodic and the
parameters of an n-state HMM, (A,B,π), are estimated using
Expectation Maximization (EM) where A is the transition
probability distribution (nxn), B the emission probability
distributions (nx1), and π the initial state probability vector
(nx1). We model the emission probability distribution using
a continuous multivariate Gaussian distribution. Specifically,
the observation state-space O is [Fx,Fy,Fz,Tx,Ty,Tz] where F
are the forces and T the torques. For our implementation,
we used the Python library scikit-learn [29].

B. Training

We split the data randomly into a train (80%) and test
(20%) set for each object-action pair and each type of model
(i.e. 8 training and 2 testing interactions for both success
and “near-miss”). We select the optimal number of states
(between 2-6 states inclusive) for the HMMs by performing
leave two-out cross-validation (CV). With 8 interactions in
the training set, this results in 28 CV sets where each set has
a different variation of 2 trajectories removed for testing.



Fig. 7: An example of force data we collect from the sensor
during a scooping skill. The yellow shaded portion indicates
the time period when the hand is in contact with the object.
The top graph is a success and the bottom a “near-miss”.

C. Modeling Results

For each object-action pair, we look at whether the mod-
els can determine success versus “near-miss” for each test
interaction. Per Section III, correctly monitoring the success
and “near-miss” of an object-action pair allows us to test for
affordances in objects. Therefore, to evaluate our models,
we look at how the models perform at monitoring test
interactions. We use the standard binary classification metrics
of precision, recall, and F1 such that precision = tp

tp+fp ;
recall = tp

tp+fn ; and F1 = 2 · precision · recall
precision+ recall where t p is the

number of true positives, f p false positives, tn true negatives,
and f n false negatives. We also include overall accuracy
= tp+tn

tp+fp+tn+fn . The interaction is classified as successful if
the log-likelihood of the successful model is greater than the
log-likelihood of the unsuccessful “near-miss” model.

The resulting scores for correctly determining each object-
action pair can be found in Table II. Overall each of the
models perform well at determining if the test interaction
within each pair was successful versus “near-miss” with
four object-action pairs achieving a perfect F1 score and
another with a score of 0.75. This could be attributed to
the fact that “near-misses” and successes have very unique
F/T readings. For example, when lifting the lid off of the
jar, the robot ended up with the weight of the lid firmly in
its hand vs. having no weight at all. The two exceptions to
this are scooping with the small blue cup and opening the
bread box. For Cup 1, the models were overly optimistic,
with all of the trajectories being classified as succeeding.
This could be due to the interactions having more noise than
Cup 2 and Parmesan Bottle because of the rigidness of the
object. While scooping, Cup 2 and Parmesan do not deform
as greatly as Cup 1. For detecting if Curi opened the Bread
Box, the models were overly pessimistic with none of the
test trajectories being classified as successfully opening the
box. We believe that this is because “near-misses” often still
pushed on the object and the sensory readings look similar
to pushing on the handle successfully.

VIII. AFFORDANCE TESTING

Our final experiment is a case study of how well existing
object-action pairs can classify other object-action pairs

TABLE II: Affordance Skill Monitoring Results

Object-Action Pair Precision Recall F1 Accuracy
Cup 1-Scoop 0.50 1.00 0.67 0.50
Cup 2-Scoop 1.00 1.00 1.00 1.00

Parmesan-Scoop 0.67 1.00 0.80 0.75
Pasta Jar-Lift 1.00 1.00 1.00 1.00
Drawer-Pull 1.00 1.00 1.00 1.00

Wooden Box-Push1 1.00 1.00 1.00 1.00
Bread Box-Push2 0.00 0.00 0.00 0.50

within the same affordance. Note, this is different than testing
for an affordance on a new object as we do not execute any
of the existing action trajectories on different objects. This
is a topic of future work due to the difficulty of adapting
an existing trajectory to a new object (a task that on its
own is a current active research area [30]–[32]). We present
this section to show the limits of using only the previously
built object-action pairs to generalize to other interactions
from existing object-action pairs. More specifically, whether
two different object-action pairs can be correctly identified
to be the same affordance. It is interesting to note that for
the scoop-able affordance, by using the same action across
similar objects, we are in fact simulating how well testing
an unseen object could possibly perform.

A. Experiment Setup

To test if the affordance model can classify an existing
object-action pair, we use leave-one-object-out cross valida-
tion within an affordance to demonstrate how a robot might
test an object for that affordance. This results in three tests
for scoop-able and four tests for open-able. For example, to
test if the Cup1-Scoop pair would be classified as having the
scoop-able affordance, we remove the model learned from
the Cup 1 interactions completely and all interactions with
Cup 1 then become the test set (10 successful and 10 “near-
miss” trajectories). For each test interaction, we use each
object-action model within the affordance to evaluate the log-
likelihood of that interaction. For scoop-able, this results in
4 different log-likelihood values (from each of the successful
and “near-miss” HMMs) and for open-able, 6 log-likehood
values. We label an object as having the affordance if the
log-likelihood value is greatest with a successful HMM and
not if the value is greatest with a “near-miss” HMM.

B. Results

The results of affordance testing can be seen in Table III
for scoop-able and Table IV for open-able. However, unlike
the results in Section VII, it is difficult to fully understand
what a “near-miss” example should be classified as given
that the interaction was on an object that did indeed have
that affordance. Instead, it makes more sense to look only
at the interactions that successfully found the affordance.
This is shown in Fig. 8 and Fig. 9 with accuracy values
for successful interactions reported separately from “near-
misses”. We only include the full precision, recall, and F1
scores in Table III and Table IV and the accuracy scores of
the “near-miss” interactions to show that the models are not
merely classifying all interactions as having the affordance.



Fig. 8: Scoopable: Accuracy values for Leave One Object
Out. The figure shows the accuracy breakdown between
successful and “near-miss” interactions

Fig. 9: Openable: Accuracy values for Leave One Object
Out. The figure shows the accuracy breakdown between
successful and “near-miss” interactions

For scoop-able, the object-action pairs correctly identify
an unseen object for both Cup 2 and Parmesan Bottle with
accuracy scores of 65% and 85% respectively. Interestingly,
Cup1-Scoop does not perform as well. This suggests that
the interactions from Cup1-Scoop were not as easily distin-
guishable, which is supported by our results in Section VII.
The results of scoop-able show that for an affordance with
relatively similar objects, it is possible to identify an unseen
object using the learned object-action models. We look next
at how well object-action models perform on an affordance
that requires very different actions on dissimilar objects. As
expected, scoop-able outperforms open-able for identifying
an affordance on unseen objects with an average accuracy
score of 67% where open-able has an average accuracy of
53%. Within open-able, the only object that the models could
reasonably classify were those of BreadBox-Push2. While
the accuracy of PastaJar-Lift and Drawer-Pull are high for
successful interactions, it is unclear if it is due to the models
truly finding the affordance because all of the interactions
(including “near-miss” interactions) were labeled as finding
the affordance. For WoodenBox-Push1, the object-action
pairs were conservative and did not label any interactions
successfully finding the affordance. This could be due to the
small F/T values overall felt during the push compared to
the other actions that opened objects.

We believe this difference in performance between the two
affordances can be attributed to different actions required to

TABLE III: Scoop-able Leave One Object Out

Object-Action Pair Precision Recall F1 Accuracy
Cup 1-Scoop 0.50 0.10 0.17 0.50
Cup 2-Scoop 0.77 1.00 0.87 0.85

Parmesan Bottle-Scoop 0.59 1.00 0.74 0.65

TABLE IV: Open-able Leave One Object Out

Object-Action Pair Precision Recall F1 Accuracy
Pastajar-Lift 0.50 1.00 0.67 0.50
Drawer-Pull 0.44 0.89 0.59 0.42

Wooden Box-Push1 0.00 0.00 0.00 0.50
Bread Box-Push2 0.60 0.60 0.60 0.60

find each of these affordances, with open-able requiring more
varying actions and scoop-able using similar actions. This
suggests that for affordances that require different actions,
additional work must be done to adapt and recognize each
action (e.g. increasing the number of object-action pairs,
including self-exploration, integrating visual information).

IX. DISCUSSION

The results of both monitoring and affordance testing show
that the system can successfully learn multiple haptic object-
action pairs by using LfD and human-guidance to initiate
the exploration and ground affordances with F/T sensing.
For five of the seven object-action pairs, we achieve high F1
scores at identifying successful execution of the action on the
object. We then show that affordance monitoring using multi-
ple object-action pairs can correctly identify the scoop-able
affordance on an unseen object with high accuracy. More
importantly, our approach allowed us to quickly generate
vastly different actions for exploration, which allowed us
to analyze and gain insight into affordances not typically
explored in the robotics community.

Scoop-able outperforms open-able and we believe this
is due to the inherent difference between the affordances
open-able and scoop-able. While there are several different
methods to open an object, there are far fewer ways to scoop.
Furthermore, actions vary significantly between the different
methods of opening vs. scooping. For example, testing if any
object can scoop macaroni, would result in similar sweeping
motions with slightly different rotations in the wrist and
end-effector offsets (e.g. scooping with a spoon or ladle).
However, as seen in this work, open-able can break down
into several different affordances. One can imagine open-able
as comprising of various affordances (e.g. lift-able, pull-able,
push-able) while scoop-able is the “lowest” level of the af-
fordance. However, modeling and understanding “high-level”
affordances such as open-able is crucial for robots to truly
plan and execute tasks. This interesting distinction between
the generality and specificity of different affordances is a
main driver of our future work. Our end goal is for robots
to reason about high-level affordances at the task planning
stage, but then dive down into the low-level representations
of how to achieve that affordance on different types of objects
when it comes time to decide how to control the manipulator.

While our current system demonstrates capabilities to



test for specific object-action pairs, it cannot adapt to new
objects. Our ongoing work tackles this directly by allowing
the robot to sample from the HMMs and build hybrid control
models that use position and haptic feedback to adapt to
new objects. This work on action generation fits within
the framework of this paper as it will augment the human
provided trajectory with robot-generated ones.

X. CONCLUSION

We showed that learned object-action models achieve
good cross-validation performance with 4 of the 7 object-
action pairs achieving a perfect F1 score. Furthermore, by
leveraging the set of object-action models per affordance, we
can identify 2 haptic affordances with an average accuracy of
67% for the simpler scoop-able affordance and 53% for more
complex open-able affordance using only haptic sensing.

In studying haptic affordances, we can begin to understand
the role haptics plays in discovering object functions and
come closer to building a representation of skills that will
allow a robot to achieve tasks in a variety of environments.
Furthermore, we have demonstrated that using LfD allows us
to quickly provide concrete examples to the robot and allow
the robot to discover the “action possibilities” that exist for
the robot as opposed to any agent. This generated trajectory
provides a means to act to sense the environment and human-
guided exploration provides a means to obtain high-quality
grounded examples of affordances.
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