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Abstract—Humans manipulate and learn about objects by not
only using vision, but also physical sensory input. To better un-
derstand how physical input improves the learning of objects af-
fordances, the relationship between objects and agents, this work
aims to characterize forces and torques felt by a force/torque
sensor (FTS) mounted on a robot while performing five unique
tasks. We simplified the search space by demonstrating to the
robot trajectories to perform and recorded 20 interactions where
a human operator moved the object in different positions to
achieve 10 successful and 10 failed interactions for each task.
The visualized information from the FTS shows that it is possible
to distinguish successful vs. failed interactions, which indicates
there is potential to use this information to build an unified model
using both haptic and visual feedback.

I. INTRODUCTION

Robots are moving from factories and highly structured
environments to homes where the environment is often clut-
tered and unpredictable. This trend opens up a new realm of
applications that range from assisting the elderly in homes
to working alongside workers in manufacturing plants. One
specific area that begins to address this growing need is the
study of affordances in relation to robots. The term affordance
was first coined by psychologist researcher J.J. Gibson in 1977
and is defined as the “action possibilities” that appear between
the environment and the agent [4]. More specifically, we can
look at the relationship between objects and agents and the
discovery of these affordances in an unstructured environment.

This paper will look at actions and their effects that a
robot can perform on an object and focus on visualizing and
understanding initial signals captured by the robot’s force
torque sensors. This information can later be used to solve
several major goals of affordance learning, which include
learning affordances with a given object and testing a new
object for specific affordances (knowledge transfer).

Some of the early and influential work in affordance
learning for robotics came from Fitzpatrick et al. [3], where
they used four parametrized primitive actions to interact
with different objects that could be pushed or rolled and
Stoytchev [10], where he looked at the problem of using a tool
as an extension of the robot arm to bring objects within reach.
These works established a framework for affordance learning
using exploration and interaction of the environment. However,
these works were very much proof-of-concept systems and
focused on visual cues for learning affordances.

Following these influential works, many groups demon-
strated complex systems that could learn affordances. Dogar
et al. [2] tackled the traversability affordance using three

Fig. 1: “Curi” the robot after hammering a peg.

simple primitives (turn-left, turn-right, and move-forward).
However, most of the work included visual cues and the only
physical feedback included in learning were wheel encoders.
Montesano et al. [9] looked at learning affordances to be used
for imitation. The work showed that knowledge transfer for
imitation was possible, but the only features used aside from
visual involved just the duration of contact and position of the
arm. In an effort to use and plan with affordances, Kruger et
al. [I8] developed a rich framework that allowed for affordances
to be defined as low-level primitives as well as chained to
performed high-level tasks. While the framework supports
using sensory input other than visual, the demonstrated system
focused on characterizing visual features. Hermans et al. [3]]
investigated primitives for pushing objects on a flat surface.
While this work performed extensive experimentation, once
again the only perceptual cues used were visual.

More recent work have looked at interesting problems
related to affordances. Koppula and Saxena [7] used affor-
dances to predict and anticipate human activities using visual
heatmaps. Katz et al. [6] used grasping affordances to learn
the best way to clear rubble in a pile. While Katz et al. used
force compliant primitives, the primitives were hand tuned,
specific to pile removal, and were not learned by the system.

II. APPROACH

In order to determine how haptics can be used to improve
affordance discovery and transfer, we focused on looking at
interactions with objects and how successful interactions differ
from failed interactions. This knowledge can later be fused
with visual information to build a model of object affordances.

A. Platform

For this work, the robot platform used was “Curi”, a robot
found in the Socially Intelligent Machines Lab. Curi has two 7
degree-of-freedom (DOF) arms and a movable torso mounted
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Fig. 2: Five objects that Curi performs skills on: (a) bottle and cap
(b) box (c) scoop and beans (d) insertion object (e) hammer toy set

on a mobile base. Curi also has two ATI Mini40 force/torque
(F/T) sensors attached to each wrist. As seen in Figure [I] Curi
is placed in front of table that has an object on the surface.
Above the table is a mounted ASUS Xtion Pro RGB-D sensor.
The point cloud information is used to segment the object on
the table and information about the object pose (position and
orientation) and the bounding box is recorded.

B. Controller

To simplify the learning of primitives to explore the ob-
ject, we used kinesthetic learning from demonstration using
keyframes to show Curi the trajectory to perform. For more
details on the specific algorithm on trajectory learning from
keyframe demonstration, please seee work by Akgun et al. [[]].

Curi has two main states: demonstration and exploration.
During the demonstration state, a human operator kinesthet-
ically demonstrates a skill for Curi to perform. Curi takes the
keyframes, generates a trajectory, and then repeats the trajec-
tory with no other input about the world. This repetition is the
exploration phase. Rather than have Curi vary the trajectory,
the human operator moves the object around. This decision is
based on prior work from Thomaz and Cakmak [11] where
they showed that humans are particularly good at placing
objects in unique configurations to find object affordances.
This decision also allows us to focus on characterizing the
F/T data between successful and unsuccessful explorations.

C. Data Collection

To classify the different forces that occur during interaction,
we selected five different task for Curi to perform. They are
listed below and all of the objects are shown in Figure [2] All
of the tasks were done with the right arm and can also be seen
in the supplemental video.

1) Closing the box - Curi closes a simple plastic box that

clicks shut when properly closed.

2) Hammering - The toy set seen in Figure [2]is designed
for children to hammer down different colored cylinders
that can be pulled up. Curi’s task is to successfully ham-
mer a single cylinder that has been pulled up already.

3) Scooping - Curi uses a ladle to scoop beans from a bowl

4) Insertion - Curi inserts the handle of the hammer from
the hammering task into a structure with a hole

5) Capping - Curi puts the cap on a laundry bottle

Each interaction was performed 20 times, where 10 inter-
actions were successfully performing the task and 10 were
unsuccessful. During the interaction, force information from
wrist F/T sensors, object information, as well as all joint
positions were recorded and stored in ROS bags.
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Fig. 5: Point cloud and bounding box: (a) bottle and cap (b) box (c)
scoop and beans (d) insertion object (e) hammer toy set

IIT. INITIAL RESULTS AND DISCUSSION

After collecting the data from the different interactions,
we can begin to visualize the F/T information and explore
methods to integrate this data with visual cues. Figure [j|
shows the five objects in Figure 2] segmented from the table.
Figure [3] and Figure [] each show force and torque values
for one successful trial and one failed trial for each task,
respectively. Furthermore, by using the keyframes given to
Curi during the demonstration, the portion of the interaction
where Curi actually touches the object can be segmented out
and is highlighted in both figures. All of the data is normalized
by subtracting the mean of the first 10 values of the interaction.

Looking at both Figure 3] and Figure [d we can see
differences between successful and failed runs within the
highlighted sections of the data for the tasks of hammering,
closing the box, and capping the bottle. Interestingly, the
scooping task looks relatively similar during the actual scoop
against the beans, but after the highlighted portion, we can
see clear differences in the force felt by the sensor. This force
represents the extra weight felt by Curi when the scoop has
beans vs. when empty. The insertion task has relatively similar
signals between success and failure. This can be attributed to
the fact that during a failure case where the robot misses the
hole completely or knocks the object over, relatively little force
is felt either because the robot missed or the object is light.
This looks identical to a successful case where the robot goes
through the hole and does not knock anything over.

The visualized data demonstrates that there is potential in
using F/T sensors to help distinguish and augment exploration.
For example, learning that the weight of an object can change
when scooping, adds a dimension to the affordance of scoop
that would be difficult to see using just visual cues. Another
example includes understanding that certain boxes latch closed
vs. just resting closed, which can enrich a simple box closing
affordance to one that includes the box being tightly shut or
loosely shut. Future work in this area will look at modeling
this information in a single representation with visual cues.
One possibility is to use the model of F/T information to
help Curi increase or decrease the possible affordances of an
object. Exploration of a novel object using existing models
could be a two-tiered system where an initial set of visual
affordances are generated and once Curi touches the object,
the set of affordances is refined. Furthermore, once this model
is developed we can begin testing ways to have Curi explore
this space with less help from the human operator.



Fig. 3: Force data captured during ex-

ploration. Each task is displayed twice,
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Fig. 4: Torque data captured during ex-

ploration. See Figure [3] for label descrip-

tions.
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