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Abstract— Our goal is to develop robots that naturally engage
people in social exchanges. In this paper, we focus on the
problem of recognizing that a person is responsive to a robot’s
request for interaction. Inspired by human cognition, our
approach is to treat this as a contingency detection problem.
We present a simple discriminative Support Vector Machine
(SVM) classifier to compare against previous generative meth-
ods introduced in prior work by Lee et al. [1]. We evaluate
these methods in two ways. First, by training three separate
SVMs with multi-modal sensory input on a set of batch data
collected in a controlled setting, where we obtain an average F1

score of 0.82. Second, in an open-ended experiment setting with
seven participants, we show that our model is able to perform
contingency detection in real-time and generalize to new people
with a best F1 score of 0.72.

I. INTRODUCTION

The overall goal of our research is to develop social robots
that interact with everyday people in human environments.
In these situations, a person working with the robot should
not be required to learn how to interact with it. We want to
enable robots to take advantage of the ways people naturally
engage in social exchanges.

Here we address one aspect of any social exchange,
recognizing that the robot is in the presence of someone
willing to interact. Our approach is inspired by human
cognition. Watson has proposed that contingency detection is
an important way for infants to recognize social agents [2]. In
an experiment with 2-month old infants, when a toy is rigged
to respond to the baby’s movement, they exhibit a higher
response rate and make social displays that are normally
directed toward caregivers. He proposed that contingency is
used by young infants to recognize social agents.

Specifically, a contingent response is a change in one
agent’s behavior within a specific time window in direct
response to a signal from another agent. In the context
of Human-Robot Interaction (HRI), when a social robot
generates a signal to a human, contingency detection should
help determine their willingness to interact (e.g., Fig. 1).

In this paper we build on the prior work of Lee et al. [1],
[3], in which they characterize the problem as one of detect-
ing a significant change between the time before and after
the robot’s signal across both visual and auditory channels.
One limitation of this prior work is that it was never tested in
a real-time interactive setting, only on datasets. Additionally,
the approach has a computationally expensive graph analysis
component that is a barrier to easily deploying the model
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Fig. 1: Curi performing the Wave signal with a participant.

in a real-time setting. Given these two observations, in this
paper we explore an alternative approach to contingency
detection, a simple discriminative Support Vector Machine
(SVM) classifier. We present two experiments. The first is a
data collection and model training experiment similar to that
presented in [1], in which we show that the SVM classifier is
able to achieve an average accuracy of 74% and an average
F1 score of 0.82, which is comparable to the performance
reported in prior works. Then, in a second experiment with
seven human participants, we show that our system is able to
perform contingency detection in real-time with an accuracy
of 67% and F1 score of 0.72.

II. RELATED WORK

There are other examples of computational models of con-
tingency in prior work. In a seminal example, Movellan [4]
developed the Infomax controller that optimally queried
the environment with the motion of a single actuator, and
determined if a detected audio signal was due to hearing the
robot’s own motion or to the presence of a social agent. In
related works, a robot learns expected contingency windows
for its own actions [5] including auditory responses from
a social partner [6]. In all of these, the research question
is around determining the expected timing windows for a
contingent response, and is limited to a single channel of
communication. Much of the previous HRI literature focused
on contingency detection has targeted a single mode of
communication, i.e. visual or auditory feedback [1], [7], [8].
We are looking at response detection and are including both
visual and auditory cues in our approach to the problem.

One way to approach contingency detection is as an activ-
ity recognition problem. A good example of this is seen in the
recent work of Rich et al. [9] that recognizes “engagement”



for a humanoid robot. Using both visual and auditory cues,
they recognize four types of events to determine that a human
is responsive to the robot: directed gaze, mutual facial gaze,
conversational adjacency pairs, and backchannels. Bohus
and Horvitz [10] similarly estimate engagement through
the recognition of a variety of specific engagement cues
(salutations, calling behaviors, specific approach trajectories
and formations). However, natural human responses are often
varied in real interaction scenarios. Rather than having to
recognize specific behaviors, our goal is to generally classify
any change in behavior as contingent.

To tackle real interaction scenarios, approaches using
visual motion have been promising. Muller et al. [11] use
motion trajectories and focused on selecting features from
the raw information to classify engagment. More recent work
from Lee at al. [1] build on this approach of using visual
motion and construct graphs on the motion captured rather
than just using feature selection methods. However, both
methods used only visual inputs and were not shown to
operate in real-time.

We frame the problem in the same way as Lee et al. [1],
repeated here for convenience. When the robot makes a
signal to a human at time ts, there are two time windows of
interest, WB : the time window before the robot’s signal; and
WA: the time window after the signal. Instead of attempting
to detect specific events, or actions, that would reflect a
person’s level of engagement, the goal is to monitor change
in the human’s behavior generally between WB and WA.

The approach taken in [1] relies on building a similarity
graph within the frames of WB and between WB and WA,
and analyzing these graphs to determine whether or not a
significant change has occurred between WB and WA. This
model showed performance with an accuracy of 79% on
a collected dataset of contingent/non-contingent events in
an HRI scenario. In follow-on work [3], this model was
extended to include both visual and auditory cues, as well as
prior knowledge about when to expect a human response to
various robot signals, letting the robot more accurately decide
what to include in the WA window. This multimodal version
with timing information showed nice performance of 91%
(on a different dataset than [1]). Neither approach was ever
shown to work in a real-time interactive setting. Our goal is
to show accurate contingency detection in a real-time HRI
setting. As such, in this paper we are proposing an alternative
to this prior work. The graph building and analysis compo-
nent are a computational bottleneck, and in this paper we
explore the alternative of a simple discriminative classifier
trained with positive and negative examples of contingency
across the WB and WA windows.

III. APPROACH

A. Robot Platform

For our experiment we used “Curi”, a humanoid mobile
robot with two 7-degree-of-freedom (DOF) arms, an omni-
directional mobile base, and a socially expressive head.

We used an Asus Xtion PRO Live RGB-D camera (ASUS)
and a two-microphone stereo array mounted in the center

of the robot’s chest. We record amplitude values from
the microphone array sampled at 44.1 KHz. We also use
OpenNI’s human tracker to record translation and rotation
data of several different body parts for each time frame. The
tracker contains information about the pose of the person’s
head, neck, torso, left and right shoulder, left and right elbow,
left and right hand, left and right hip, left and right knee, and
left and right foot.

For the purpose of experimenting with contingency detec-
tion we use a simple finite state machine (FSM) controller
with six distinct states:

• Idle - Curi actively monitors the scene to detect if a
person has entered her field of view.

• PreSignal - Curi enters this state once a person is de-
tected. The person is tracked for the remaining duration
of the interaction. Curi starts recording data from the
ASUS and microphone sensors in this state, capturing
the data for the before window of interest, WB .

• PerformSignal - Curi performs a greeting once the
person comes within a set threshold distance and ts
represents the moment Curi performs the signal.

• PostSignal - Curi observes the person’s response for
a specified time window, capturing sensor data for the
WA time window.

• DetermineContingency - Given the WB and WA data,
a classification of contingent/not-contingent is made
with the SVM model (to be detailed). If the model
determines a contingent response, Curi moves to the
engagement state. Otherwise, returns to Idle.

• Engagement - Curi continues interacting with the per-
son, selecting one of several spoken utterances. Once
the interaction is completed, Curi returns to Idle.

B. Contingency Cue Features

To detect a significant change between PreSignal and
PostSignal, we select cues that can distill the sensor data into
an aggregate measure, a holistic view of the user’s current
situation. We use the change in audio and body motion before
and after the robot greeting; based on time windows reported
in prior work we set the length of WB to two seconds
and WA to three seconds. For each channel of audio (left
and right), we compute the sound cue, cs, as the average
difference in amplitude between adjacent time frames:

c(j)s =
1

n− 1

n−1∑
t=1

at+1 − at (1)

where n is the number of time frames in the window and at
is the amplitude of the audio signal, for channel j at time t.
This results in two audio features for each time window.

For the body motion cue, we compute a measure of
the aggregate variance of translations and rotations of each
joint. To reduce the dimensionality of the cue vector and
efficiently generalize motion, we merge body parts into six
larger connected components: head, torso, left arm, right
arm, left leg, and right leg. For example, the left arm
component includes left hand, left elbow, and left shoulder.
The torso is the only body part that we include both the



TABLE I: Set of possible human actions during model training data collection

Behavior Before Signal Behavior After Signal Contingent Action
From far off, walk towards Curi Stop in place and say a greeting Yes
From far off, walk towards Curi Stop in place and wave Yes
From far off, walk towards Curi Stop in place, wave, and say a greeting Yes
Within Curi’s field of view and talking in another direction Stop talking and look at Curi Yes
Within Curi’s field of view and talking in another direction Stop talking and look at Curi and say Yes Yes
Within Curi’s field of view and talking in another direction Stop talking and look at Curi and wave Yes
Within Curi’s field of view and facing Curi Walk up to Curi and say greeting Yes
Facing away from Curi and in field of view Turn and look at Curi Yes
Facing away from Curi and in field of view Turn and say greeting Yes
Facing away from Curi and in field of view Turn, look, and wave at Curi Yes
Facing away from Curi and in field of view Turn, look, wave, and say greeting at Curi Yes
Facing away from Curi and in field of view Walk up to Curi and say greeting Yes
Tying shoe in Curi’s field of view Stop and look at Curi Yes
Tying shoe in Curi’s field of view Stop, get up, and look at Curi Yes
Tying shoe in Curi’s field of view Stop, get up, say a greeting, and wave Yes
From far off, walk towards robot Continue walking past robot No
Facing away from Curi and in field of view Do not move No
Tying shoe in Curi’s field of view Continue tying shoe No
Within Curi’s field of view and talking in another direction Continue talking No

translation and rotation values. For the head component, we
only include rotation, and for all other body parts, we only
look at translation. We compute the motion cue, cm, for each
component j, using Equation 2:

c(j)m =
1

n− 1

√√√√n−1∑
t=1

(bt+1 − bt)2 (2)

where bt represents the body motion at time t. This results
in seven features for WB and seven features for WA.

C. SVM Contingency Classifier
Our focus is on building a system that can use contingency

detection in real-time. We believe that a discriminative ap-
proach could prove more efficient than a generative approach
if we can show that performance is similar.

Given a dataset of positive and negative examples of
contingency between WB and WA, we trained three separate
SVMs: using audio cues only, body motion cues only, and
using both. The input for this classification problem is the
two windows WB and WA merged together to form a single
input vector. Thus in the audio only case this input vector
has 4 features (2 x 2 audio cues), in the body motion only
case it has 14 (2 x 7 body motion cues), and the combined
case has all 18 features.

In the next section we describe the training dataset. During
both experiments described in the following sections, we
used 5-fold cross validation on a training set to select the
“best” SVMs for all three inputs (audio, body motion, and
merged). We also cross validated on different kernels: RBF,
Linear, and Polynomial. All “best” SVMs were selected
using the scores found during cross validation and trained
with weighted bias to account for our unbalanced training
set as described in the next section. All SVMs used came
from the python machine learning library scikit-learn [12].

IV. TRAINING CONTINGENCY DETECTION MODELS

A. Data Collection
In order to collect a data set with a wide range of

contingency behavior, we systematically collected a specified

set of behaviors from three different people (the authors).
We collected this data by having each person perform each
of the short interactions listed in Table I. Each interaction
began with the human starting the “before signal” behavior,
and once the robot detected a person in the field of view it
would provide one of the following signals: a verbal greeting
of “Hi”, or a waving gesture (see Figure 1). Each person did
all of the interactions in Table I for each type of robot signal.

All of the contingent interactions were collected twice
and the non-contingent interactions were collected three
times. This was done to balance the number of positive and
negative examples of contingency. Originally, we had more
non-contingent interactions than the ones listed, but have
since realized that many were actually “subtly contingent”
(e.g. the person looks at the robot, says “hold on” and
looks away). We have removed these examples from the
dataset, resulting in an unbalanced set of contingent vs.
non-contingent trials. The final set seen in Table I contain
15 examples of contingency vs. only 4 examples of non-
contingency, resulting in 30 trials of contingent reactions and
12 trials of non-contingent reactions per person and per robot
signal.

We created multiple training and test sets from this data.
To simulate a real-world scenario, we used a leave-one-user
out approach for splitting the training and testing sets. Thus,
we have three separate train/test sets, each with 84 training
examples and 42 testing examples for each robot signal.

B. Model Performance

We used the standard metrics of precision, recall, and F1

score, as defined in Table II, where tp is true positives, tn is
true negatives, fp is false positives, and fn is false negatives.
We also computed accuracy across the entire test set.

The results of testing on each separate test set can be seen
in Figure 2, which shows the F1 scores by cue type and
test set. The Hi and Wave signal has an average F1 scores
of 0.79 and 0.84 respectively. When the robot performs the
Hi signal, merging the two cues (audio and body motion)



TABLE II: Metric Equations

Precision Recall Accuracy F1

tp
tp+fp

tp
tp+fn

tp+tn
tp+fn+tn+fp 2 · precision · recall

precision+ recall
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(a) Hi Signal. Average F1 scores of 0.79 for merged cues
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(b) Wave Signal. Average F1 score of 0.84 for merged cues

Fig. 2: F1 scores, training on 2 people and testing on 1, for
both robot signals. See also Table III

does not seem to help the classifier’s performance. However,
in the wave case, we clearly see an improvement of scores
when using audio and body cues.

To gain a better understanding of the performance of
the classifiers, we broke down the results to show how the
classifiers performed on the contingent vs. non-contingent
experiments. These values as well as the accuracy, precision,
and recall scores are shown in Table III. The Hi and Wave
signal has an average F1 scores of 0.79 vs. 0.35 and 0.84
vs 0.56 respectively. All classifiers perform better on the
contingent examples than non-contingent examples, which
we expected given the unbalanced nature of our training data.
However, we would like to note that the classifiers do not
label everything as contingent to achieve these scores.

To understand how the models performed compared to
the prior work, we computed the results of the different cues
using accuracy, the metric used by Lee et al. [3] [1]. These
values can be seen in Table III. The Hi and Wave signals
obtained an average accuracy of 70% and 77% respectively.
To understand these scores, we first need to look at the
experiment data collected by both prior works.

TABLE III: Detailed Model Training Classification Results

Signal Data Acc. Label P R F1

Hi

Audio 0.57
C 0.73 0.62 0.63

NC 0.37 0.44 0.36
A 0.63 0.57 0.63

Body Motion 0.66
C 0.81 0.82 0.82

NC 0.54 0.53 0.54
A 0.74 0.74 0.82

Merged 0.70
C 0.78 0.82 0.79

NC 0.33 0.39 0.35
A 0.65 0.70 0.79

Wave

Audio 0.67
C 0.82 0.74 0.75

NC 0.29 0.50 0.36
A 0.67 0.67 0.75

Body Motion 0.70
C 0.80 0.80 0.80

NC 0.46 0.47 0.46
A 0.70 0.71 0.80

Merged 0.77
C 0.82 0.87 0.84

NC 0.62 0.53 0.56
A 0.77 0.77 0.84

Key: (Acc)uracy, (P)recision, (R)ecall, (C)ontingent, (N)ot (C)ontingent, (A)verage
Note: (A)verage is the weighted average of contingent and noncontingent for precision,
recall, and F1. The darker the color, the better the score

In [1], the problem statement was most similar to ours
because the authors used contingency detection for response
detection. The dataset collected by this work matched the
type of dataset used in our model training. The work looked
at using two different visual cues to improve contingency
detection, but did not use audio cues. Furthermore, the
work only tested robot cues that were physical, similar to
Wave, but did not have any audio robot signals. The highest
accuracy obtained by [1] was 79%.

Lee et al. [3] extended the prior model and integrated var-
ious cues including audio. Additionally, the follow-on work
included prior knowledge about the typical response delay
for the various robot signals used in the task. The evaluation
dataset for this work was from sessions of people playing the
game Simon Says with a robot. This dataset breaks down into
two components: negotiation phase, where the robot listens
for audio cues, and a game phase, where users mainly use
physical motion to mimic the robot. This is arguably an
easier dataset for merging audio and visual cues because
the interaction often was entirely audio or entirely visual.
Our training set including many examples where both audio
and visual cues were necessary to determine contingency.
The highest average accuracy obtained by [3] was 91%.
This in part goes to show that the staged contingency events
that we use for evaluation (also used in [1]) may just be
a harder problem and more similar to a realistic interactive
task scenario.

The results of training our classifiers fill in the missing
gap of how using audio and motion cues effect the accuracy
of using contingency detection for response detection. We
obtain a comparable accuracy to [1], especially when we
compare the results of Wave to their physical robot cues.

V. INTERACTIVE CONTINGENCY DETECTION

After we trained our contingency detection classifiers, our
second experiment tests their ability to be used in real-time
situations and to generalize to new users.



A. Extending to Real-Time

To classify users in real-time, we use the same sensors,
controller, and FSM discussed in Section III-A. However,
instead of just recording the data, Curi processes the entire
interaction example in DetermineContingency as soon as
the PostSignal state completes. During DetermineContin-
gency, Curi calculates the audio and body motion cues
and uses the best merged SVM classifier from training to
decide contingency. Curi performed a follow-up sentence
if contingency was detected, or otherwise said “Bye.”1 The
average time for Curi to respond was less than 2 seconds.

B. Experiment Design

In our validation experiment we test the system with seven
new humans (5 male, 2 female) that were not part of the
training set. The interaction was similar to that used for
collecting our training examples. We designed three different
“before signal” scenarios for the experiment:

• Within view of the robot and talking on the phone
• Within view of the robot and reading a book silently
• From far off, walk towards Curi
All participants did each scenario four times, 2 contingent

and 2 non-contingent, resulting in 84 different interactions.
We randomly assigned the scenario order, as well as the order
of responding contingently or not.

Participants were instructed before each scenario, to re-
spond contingently or not to the robot’s greeting. In the non-
contingent trials, they were told to ignore the robot. For the
contingent runs, there was no behavior specification given,
the participants was asked to respond naturally.

In this experiment, we only used the Hi signal from
Curi. After doing pilot runs with users, we discovered the
Wave signal was too slow for people to react and engage
naturally. Participants were confused as to why the robot
was not responding until after the wave was done. This can
be addressed in future work by speeding up the gestures, and
by allowing a cross modal response (i.e., responding in the
speech channel before the body gesture has finished). This
was not done for this experiment because the change in the
signal would invalidate the data collected during contingency
modeling (Section IV) and require new data to be collected
and new SVMs to be trained.

C. Results

The results from this experiment used the same evaluation
metrics in Table II and were obtained by testing with the
three separate classifiers trained using leave-one-user-out
testing (Clouo) in Section IV. The individual and average
F1 scores can be seen in Figure 3 displayed by cue type.
The detailed scores can be seen in Table IV.

The average F1 score is 0.54 when using both audio and
body motion cues. However, if we look at the just using
audio cues, the average F1 score jumps to 0.72.

To see if we could improve these results, we built a model
(Call) with all of the data from the first experiment. Recall,

1This interaction can be seen in the video included with the paper.
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Fig. 3: F1 scores of Leave-One-User-Out on test set. For
exact numbers refer to Table IV

TABLE IV: Average Leave-One-User-Out (Clouo) Results

Data Acc. Label P R F1

Audio 0.66
C 0.65 0.83 0.72

NC 0.68 0.48 0.53
A 0.67 0.66 0.72

Body Motion 0.51
C 0.51 0.71 0.59

NC 0.47 0.31 0.36
A 0.49 0.51 0.59

Merged 0.43
C 0.47 0.67 0.54

NC 0.39 0.25 0.28
A 0.43 0.46 0.54

Key: (Acc)uracy, (P)recision, (R)ecall, (C)ontingent, (N)ot (C)ontingent, (A)verage
Note: (A)verage is the weighted average of contingent and noncontingent for precision,
recall, and F1. The darker the color, the better the score

the previously built models only used data from two users
at a time. Call was trained using the same cross validation
method described in Section III-C, except we removed cross
validation over different kernels. Whenever the model used
a kernel other than the linear kernel, it would label all runs
in the cross validation test set as contingent. The results of
Call is seen in Table V. Again, none of the trained classifiers
saw any examples in the newly collected test set, even when
selecting the classifier to use.

The resulting F1 score improves to 0.63 when using
Call. However, the F1 score when using just the audio cue
drops to 0.61. When looking closer, this occurs because the
Call classifier does better at the non-contingent cases, but
drops slightly for the contingent cases. Figure 4 shows the
breakdown in F1 scores and accuracy for both Call and Clouo

on the different cues. The highest accuracy obtained (67%)
is by the audio cue classifier Call.

Almost all of the SVMs trained with just the audio
cues outperformed the other classifiers regardless of training
dataset or score metric. During both the training and test
experiments, we noticed a tendency of people to respond
with the same modality that the robot used to initiate the
interaction. When Curi provided a verbal greeting, people
were inclined to respond verbally. When Curi waved, people
were inclined to respond with a gesture. We believe this
largely contributed to the superior performance of the audio
classifier in the real-time validation set. This is a promising
opportunity for future work where a classifier could be



TABLE V: All Users Trained (Call) Results

Data Acc. Label P R F1

Audio 0.67
C 0.73 0.52 0.61

NC 0.63 0.81 0.71
A 0.68 0.67 0.61

Body Motion 0.52
C 0.52 0.71 0.60

NC 0.54 0.33 0.41
A 0.53 0.52 0.60

Merged 0.57
C 0.55 0.74 0.63

NC 0.61 0.40 0.49
A 0.58 0.57 0.63

Key: (Acc)uracy, (P)recision, (R)ecall, (C)ontingent, (N)ot (C)ontingent, (A)verage
Note: (A)verage is the weighted average of contingent and noncontingent for precision,
recall, and F1. The darker the color, the better the score

selected based on the modality of the robot’s signal to boost
the overall performance.

The performance drop between our trained model F1 score
of 0.79 to the real-time experiment dataset F1 score of 0.72
was expected due to the difficulty of generalizing to the
real-time experiment where participants were free to do any
contingent reaction. Some particularly difficult cases were
participants who continued their body behavior and simply
verbalized a responses to Curi (e.g. asking the person to
“hold on” when on the phone before beginning a conversa-
tion with Curi). From the perspective of the model, there was
no distinctive difference in sensory input before and after the
signal even though the participant was contingent.

To improve the real-time classifier results, there are some
avenues of future work. First, collecting a more balanced
dataset with a wider range of reactions from participants.
Another is to use a second level Bayesian inference model
similar to the approach used in [3] to combine cues on
a decision level, when each individual cue classifier has
returned a prediction. Currently, we have merged at the
module level by putting the cues directly together into one
feature vector. A final improvement for future work is to
explore incremental recognition, allowing the robot to signal
again in order to determine, with higher confidence, the
user’s intent.

VI. CONCLUSION

We tested a discriminative supervised classifier approach
for using contingency to solve the engagement detection
problem. We trained SVM models using two different sen-
sory inputs for two different robot signals. In training, the
models were able to successfully detect engagement on a
completely different user with an average F1 score of 0.79
for the Hi signal and 0.84 for the Wave signal. These results
are comparable to previous approaches.

We successfully implemented the engagement detection
system in real-time, a task that the prior work did not attempt.
We tested the system with seven new users and showed that
the trained model was able to generalize to these new users
with a best average F1 score of 0.72. These results show
that contingency can be used to successfully detect user
engagement in real-time.
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Fig. 4: Average F1 score and Accuracy for Clouo and Call
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