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Abstract— Delivering on the promise of real-world robotics
will require robots that can communicate with humans through
natural language by learning new words and concepts through
their daily experiences. Our research strives to create a robot
that can learn the meaning of haptic adjectives by directly
touching objects. By equipping the PR2 humanoid robot with
state-of-the-art biomimetic tactile sensors that measure tem-
perature, pressure, and fingertip deformations, we created a
platform uniquely capable of feeling the physical properties of
everyday objects. The robot used five exploratory procedures
to touch 51 objects that were annotated by human participants
with 34 binary adjective labels. We present both static and
dynamic learning methods to discover the meaning of these
adjectives from the labeled objects, achieving average F1 scores
of 0.57 and 0.79 on a set of eight previously unfelt items.

I. INTRODUCTION

Robots are beginning to move out of highly structured

factories and laboratories into the real world, aiding humans

in applications ranging from floor cleaning and flexible

manufacturing to bomb disposal and surgery [1]. As robotic

teammates encounter increasingly uncertain environments,

they will need to communicate with the humans around them,

an interaction that will most likely occur through natural

language [2], [3], [4]. Robots will need to be able to learn

new words and concepts through their physical experience

with the world, as human children do, by seeing, hearing, and

manipulating real objects and environments. To deepen our

understanding of perceptually grounded language acquisition

and improve robotic interaction with the physical world, this

work aims to create a robot that can learn the meaning

of haptic (touch-based) adjectives by physically interacting

with labeled objects through sensitive fingertips, as shown in

Fig. 1.

Touch is uniquely interactive among the senses, combining

the ability to feel rich stimuli across the skin with the

knowledge of bodily movement. Tactile sensitivity in the

glabrous (non-hairy) skin of the hand is governed by four

types of mechanoreceptors: the fast-adapting Meissner and

Pacinian corpuscles sense vibrations and impacts, and the

slow-adapting Merkel cells and Ruffini endings sense static

skin deformation and stretch [5]. Glabrous skin also contains

thermoreceptors and nociceptors for sensing temperature
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Fig. 1. A PR2 equipped with BioTac sensors explores a blue sponge. All
of the objects on the table are in the Penn Haptic Adjective Corpus 1.

and pain [5]. Standard robotic tactile sensors do not begin

to match the richness of human tactile sensitivity, though

robots do usually excel at sensing their own motion. In

humans, kinesthetic feedback relays the pose of the limbs

and the effort being exerted at each joint by aggregating

tactile mechanoreceptors with receptors that measure muscle

length and muscle velocity [5]. These combined signals

allow a human to know their hand position as they gently

scan a wall for the light switch in a dark room. As this

example illustrates, the sense of touch is inherently active

– uncovering information about the environment requires

exploration. Lederman and Klatzky were the first to discover

that humans use stereotypical exploratory procedures (EPs),

such as lateral motion for texture and pressure for hardness,

to reduce their uncertainty about new objects [6].

Other researchers have taken cues from human haptic

knowledge to make robots more graceful in manipulating

their environment. Romano et al. [7] imitated human grasp-

ing procedures to create a tactilely sensitive PR2 controller

that holds objects with near-minimal force to avoid crushing

them. Chitta et al. [8] used the PR2 to determine how

much liquid remains in a beverage container by grasping

the container, rolling it from side to side, and monitoring

the high-frequency peaks in the PR2’s tactile sensor array.

Sinapov et al. [9] explored the use of different scratching

motions to recognize and categorize textures; comparisons

between single and multiple exploratory motions showed that

joining different motions improves the results of the classifi-

cation [9]. More recently, Fishel and Loeb used a SynTouch

BioTac sensor and Bayesian techniques for choosing a series

of movements from a repertoire of various stroking motions

to classify 117 textures with 95.4% accuracy [10]. Griffith



et al. [11] also demonstrated the benefits of having a robot

perform multiple exploratory movements such as grasping,

shaking, dropping, and flipping the object while analyzing

the resulting audio, visual, and haptic signals.

While much previous research has focused on enabling

robots to recognize particular object instances through the

sense of touch, e.g., [12], [13], [14], we are interested in

generalizable physical knowledge. To do so we focused on

haptic adjectives – words used to describe how objects feel.

Previous robotics work in this area is sparse, though human

use of common haptic adjectives has been reasonably well

characterized [15]. In this paper, we seek to demonstrate a set

of methods that enable a tactilely sensitive robot to learn the

meaning of haptic adjectives through physical interaction.

II. ROBOTIC PLATFORM

As shown in Fig. 1, we augmented a humanoid robot with

advanced multi-channel tactile sensors to obtain a platform

capable of both controlled manipulation and rich tactile

sensing.

We selected Willow Garage’s PR2 (Personal Robot 2) for

our robotic platform. The robot’s anthropomorphic arms and

head make it suited for performing tasks a human might un-

dertake, while its low inertia and backdrivabilty make it safe

to operate in a human environment. This standard platform

has a widely adopted software interface, the Robot Operating

System (ROS), which allowed for fast software integration

with pre-written libraries such as MIT’s EE Impedance Arm

Controller [16] and Willow Garage’s Tabletop Object De-

tector [17]. The PR2 robot has two 7-degree-of-freedom (7-

DOF) robotic arms, each with a 1-DOF two-fingered gripper,

plus a suite of cameras and LIDAR sensors. Each fingertip

of each gripper houses a default tactile sensor containing 22
tactile sensing elements, 15 of which face inward to make

contact with the object being grasped. These fingerpads are

capable of sensing only pressure that is normal to each

tactile cell, sampled at 24.4 Hz. While this combination

of discrete low-frequency pressure signals is sufficient for

preventing the robot from crushing most objects [7], we

sought robotic fingertips capable of sensing a wider array of

tactile signals at higher frequencies to more closely match the

touch sensing humans have at their disposal when learning

haptic adjectives.

We selected SynTouch’s BioTacs (Biomimetic Tactile Sen-

sors) for this project. Each human-fingertip-sized BioTac

sensor includes a lightly ridged silicone skin filled with

conductive fluid over a heated rigid core patterned with elec-

trodes [10]. The sensor measures five types of tactile signals:

low-frequency fluid pressure (PDC), high-frequency fluid

vibrations (PAC), core temperature (TDC), core temperature

change (TAC), and a set of nineteen electrode impedances

(E1 . . . E19) spatially distributed across the core. PAC is

sampled at 2200 Hz, and the others are sampled at 100 Hz.

The metal fingers of the PR2’s gripper were redesigned to

mechanically accommodate a pair of BioTac sensors while

maintaining compatibility with the PR2’s default fingerpads.

The new fingers were custom machined out of aluminum,

anodized, and installed in a replacement gripper by techni-

cians at Willow Garage. In the new design, the BioTac sensor

slides into a profiled hole on the end surface of the finger

and is held in place with a set screw. As with the original

finger design, a default tactile sensor or a non-sensorized

fingerpad attaches to the inner surface of the finger using

two long machine screws. Because these screws pass through

the BioTac’s profiled hole, only one type of fingertip can be

installed at a time. Exchanging two default fingerpads for

two BioTacs takes between 5 and 10 minutes.

A 12-Volt USB hub was added to the exterior of the PR2’s

left shoulder for powering and communicating with the Bio-

Tacs. A Cheetah SPI-to-USB host adapter unit attaches to the

USB hub for communication. The USB-power and SPI data

cables were routed externally down the robot arm, attached

loosely in two locations to prevent the robot from straining

the wires during movement. The SynTouch BioTac hand

board is mounted at the base of the gripper, and each BioTac

board is mounted on the outside surface of its respective

finger. This modification was successfully performed on the

PR2 robots at both Penn and UC Berkeley. Full details of our

mechanical and electrical integration methods are available

at http://bolt-haptics.seas.upenn.edu/. To interface with ROS

software, a publisher node was built to read in the data from

both BioTacs and publish that data at 100 Hz over the ROS

network.

III. PENN HAPTIC ADJECTIVE CORPUS

After integrating the BioTac sensors with the PR2, we

used this new system to collect a large amount of physical

interaction data while the robot repeatedly touched a set of

objects. We also had human participants blindly interact with

the same objects to provide ground-truth ratings of the haptic

adjectives that apply to each one. Together, the recorded

robot interaction data and the associated adjective labels

constitute the Penn Haptic Adjective Corpus 1 (PHAC-1).

A. Objects

We created an object specification list to ensure that

explored items fit within the sensory and motor limits of our

platform while still preserving a range of interesting tactile

properties. To simplify the interactions, all objects must stand

upright on a table and have two flat, parallel, vertical sides

with identical surface properties. So that the PR2 gripper

can surround the object and then touch it with both BioTacs,

each object has a thickness between 1.5 cm and 8 cm. Each

object’s height is greater than 10 cm to give the PR2 gripper

room to vertically slide along the object’s surfaces without

colliding with the table. The silicone skin of the BioTacs can

be punctured or damaged by sharp, pointed, or scalding hot

objects, so we excluded items with any of these dangerous

properties. In addition, all objects must be clean and dry to

prevent damage to any of the system’s electronics.

We found 51 objects that conform to the above specifica-

tion, as pictured and named in Figure 2. Many are household

items, while others are constructed from raw materials. We

attempted to obtain a large set of objects that represent a
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Fig. 2. The 51 objects included in the Penn Haptic Adjective Corpus 1,
organized by their primary material.

range of physical properties without significant redundancy.

In addition to the 51 PHAC-1 objects, several extra objects

that conform to the specification were collected for use in

testing our system.

B. Robotic Data Collection

The PR2 was programmed to execute a fixed set of

movements to tease out interesting haptic signals from

each object in the corpus. To expedite training, the object

was placed within a fully open gripper with a purposeful

variation in position to simulate the imprecision of object

detection. For the full testing and demonstration system,

we integrated standard ROS tabletop object detection and

arm motion planning algorithms to place the gripper around

the object. Once the gripper is in position, a touch-reactive

controller using the BioTac sensors begins to explore the

object. This custom controller was largely based on the

“pr2 gripper sensor controller” ROS package written by Ro-

mano et al. [7].

Lederman and Klatzky demonstrated that humans employ

a stereotypical set of exploratory procedures (EPs) when

haptically evaluating novel objects [6]. For this work, we

identified a subset of these procedures that are feasible for the

PR2 to perform: “Enclosure” (for perceiving object volume),

“Pressure” (hardness), “Static Contact” (temperature), and

“Lateral Motion” (texture). While these four EPs might

be sufficient for a robot to learn many haptic adjectives,

the “Lateral Motion” EP in particular can be performed in

a variety of ways. Fishel and Loeb recently showed that

different textures can be recognized with greater accuracy if a

BioTac performs multiple lateral motions of varying pressure

and speed [10]. Their results indicated that higher force with

lower speed (1.262 N, 1.0 cm/s) was good for perceiving

traction, while low force with high speed (0.20 N, 6.31 cm/s)

reduced uncertainty about the surface’s roughness. Com-

bining this information with knowledge about human EPs,

we refined and expanded the robot explorations into five

predefined robot motions that yield streams of haptic data:

Tap, Squeeze, Static Hold, Slow Slide, and Fast Slide. The

entire sequence can be seen in the video that accompanies

this paper.

Figure 3 presents the haptic signals for one complete

robotic interaction with an object, with the controller states

labeled across the top. The Center state is not intended

for data analysis, but rather to achieve approximately equal

contact pressure on the two BioTacs. Without centering,

the finger that first contacts the object tends to develop a

high contact force, while the other finger may not touch

the object at all, adding unnecessary variability between

trials. Centering involves a simple bang-bang control based

on the two PDC signals; the gripper closes both fingers

simultaneously, makes light contact with one finger first,

re-centers the gripper by a small amount, and repeats this

process several times until the two fingers contact the object

at approximately the same instant.

During the Tap phase, the PR2’s gripper quickly closes

around the object until contact occurs on both BioTacs. When

both fingers’ PDC readings exceed a small predefined value,

the gripper opens to release the object. Squeeze slowly closes

the gripper at constant velocity until a moderately large

predefined PDC value is achieved on at least one of the

two fingers, then the gripper slowly opens. During Static
Hold, the robot gently holds the object for ten seconds to let

the warm fingers reach thermal equilibrium with the object,

which is typically at room temperature. During this phase, the

desired aperture for the robot’s gripper is 50% of the distance

between the position where contact is first detected and the

position where the PDC threshold is reached during Squeeze.

Our initial attempts to achieve consistent light contact based

only on PDC were largely unsuccessful when tested on the

range of objects in the PHAC-1 because the fingertips must

penetrate soft objects significantly more than hard objects in

order to reach the same finger pressures. For Slow Slide and

Fast Slide, the PR2 contacts the object with both fingers and

then moves downward for a distance of 5 cm, releasing the

object in between and at the end of the motion. Slow Slide
uses a stronger contact (20% of the total distance during

Squeeze) and slides at 1 cm/s, compared to the lighter contact

(10%) and faster 2.5 cm/s speed of Fast Slide.

The robot used this sequence of five EPs to touch each

of the 51 objects ten times. Each of these 510 trials was

recorded as a ROS bagfile that contains time histories of

all PR2 transforms, left arm joint efforts, positions, and

velocities, left gripper accelerometer readings, the narrow

stereo left camera video feed, all readings from both BioTac

sensors, and the timing of the controller states and sub-states.

As shown in Figure 3, a subset of these signals was chosen

for the current analysis, including gripper aperture, Xg , the

vertical position of the gripper in the torso frame, Ztf , and

all signals from both left and right BioTacs.

C. Haptic Adjective Labels

Ground-truth labels are needed to enable the robot to

associate the quantitative data it collects with subjective

ratings of how the objects are perceived to feel. We started
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this labeling process by having pilot participants touch the

objects under conditions matched to those used by the PR2 –

using only two fingers, wearing noise-canceling headphones

playing pink noise, and with the object occluded from view

by a visual barrier. We first tested these pilot participants

in free response to see what adjectives they used. We also

surveyed the literature to discover what adjectives have

previously been used to describe the feel of objects [15], [18].

This process allowed us to assemble the list of 34 adjectives

shown in Figure 4. We treat each adjective as a binary label

that can apply to any object, while each object can have

any number of positive labels from this set. We purposefully

avoided assuming any antonym or synonym relationships

because we want to develop methods that can uncover such

correlations from the data. Four volunteers then touched each

PHAC-1 object using the above procedure and assigned each

object a binary (yes/no) rating for each of the 34 selected

adjectives. The objects were presented in random order.

For each object-adjective pair, we counted the number of

participants who used that adjective to describe that object, a

value that ranged from 0 to 4. These ratings were subjected

to a majority voting scheme to determine the final binary

labels: for our set of four participants, an agreement of three

or more individuals was required to yield a positive label,

whereas two or fewer individual positive labels produced an

overall negative label for that object-adjective pair. As noted

in Fig. 4, three adjectives (elastic, grainy, and porous) were

found to apply to only one object in the corpus. Learning the
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meaning of an adjective from a single example is a difficult

problem, and the lack of additional examples precludes

testing any developed learning methods, so we eliminated

these three adjectives from further consideration, leaving 31
in the set.

Since this dataset of adjective ratings is categorical, non-

negative, and uniformly scaled, we used correspondence

analysis (CA) to investigate the validity of these labels. As

Picard et al. explains [18], “CA has been traditionally used

to posit both stimuli and descriptors in an n-dimensional

space, where the distance between the stimuli reflects their

perceived dissimilarity and the location of the descriptors

reflects their degree of association with the stimuli.” In

our study, the stimuli are the objects, and the descriptors

are the adjectives. We found that 10 dimensions contribute

significantly to the space described by the 51 objects and the

31 binary adjectives. Figure 5 shows where each adjective

and each object sit in the first two dimensions. We observe

that similar objects, such as the concrete and the brick, appear

close to one another, as do similar adjectives, such as com-

pressible and deformable. This investigation demonstrates the

validity of the labels.



IV. MACHINE LEARNING TECHNIQUES

We tested two approaches for learning the associations

between what the robot felt when exploring the objects and

the ground-truth haptic adjective labels. Our first method

follows existing robotic texture recognition systems such

as those by Fishel and Loeb [10] and Sinapov et al. [9],

which use carefully crafted static features in conjunction with

machine learning algorithms. Our second method is inspired

by the observation that many of the haptic data channels

resemble audio signals, a research area that typically uses

dynamic learning techniques. All of our machine learning

algorithms were implemented using scikit-learn [19], an

open-source package for Python.

A. Static Feature Learning

Before extracting features from a robot-object interaction

trial, we zero each of the 46 channels of BioTac data

(2× (4+ 19)) by subtracting the mean of the channel’s first

100 measurements. We then split the run into the five EPs:

Tap, Squeeze, Static Hold, Slow Slide, and Fast Slide. Each

EP is passed through our feature extraction pipeline, with

the same set of features being calculated for each one. This

systematic feature extraction process was designed to enable

the machine learning algorithms to determine which EP and

which features are best for learning a given adjective. We

selected a total of 47 features: 22 for each BioTac and 3 for

the robot transforms.

1) Features: The first set of features focuses on PDC ,

the internal fluid pressure experienced by the BioTac. We

calculate the maximum and the mean of the signal over the

duration of the EP as the first two features. For the third,

we smooth PDC using an 11-point Hanning window before

computing the greatest change in the signal’s slope over time.

These features were designed to capture the compliance of

the object as PDC varies significantly with object stiffness.

The next set of features is based on the high-frequency

pressure variations recorded in the BioTac’s PAC channel.

Past research has demonstrated good robotic texture recog-

nition using simple frequency-domain features constructed

from this same signal [10] and from measurements by a

high-bandwidth accelerometer [9]. We first convert zeroed

PAC into a non-normalized energy spectral density, ESD(ω),
where ω is the vector of frequencies. To capture the shape

of this curve using only a small number of features, we then

compute the total energy, the area under the ESD curve;

the spectral centroid, the weighted average of the ESD; the

spectral variance, the statistical variance of ESD; the spectral

skewness; and the spectral kurtosis.

The third set of features is constructed from the two

BioTac temperature signals. As shown by Lin et al. [20],

the thermal conductivity of a material can be measured using

TAC and TDC . Under the same contact conditions, thermally

conductive materials (e.g., metal) pull heat from the BioTacs

more quickly than thermally insulating materials. The first

feature we selected in this domain is the area under TAC over

the duration of the EP, calculated via trapezoidal integration,

to capture the amount of heat transferred out of the sensor.

The second selected feature is the time constant of an

exponential fit of TDC over time, which directly reflects how

quickly the BioTac core temperature changes after coming

into contact with an object at room temperature.

The fourth group of tactile features is based on the

readings from the BioTac’s 19 electrodes. These signals are

highly coupled due to their spatial proximity within the fluid

of the finger. Consequently, we used Principal Component

Analysis (PCA) to find the synergies that arise between the

electrodes for each of the five EPs (analyzed separately to ob-

tain principal components specific to each motion). The first

two principal components were found to capture the majority

of the electrode signal variance in the training data for all

five EPs. The features selected were the coefficients of fifth-

order polynomial fits of the first two principal components

over time, which yields twelve features.

The last set of features stems from the movement of the

PR2 robot, particularly the gripper aperture distance, Xg , and

the vertical position of the gripper, Ztf . We take the mean

and minimum of the aperture distance and the range of the

gripper’s vertical position. These features were designed to

reveal the size of the object and the extent of the gripper’s

vertical movement during the trial. Vertical movement was

selected because the friction of the object affects how the

PR2’s hand moves during the sliding EPs.

2) Learning Algorithms: The first stage of the static-

feature-based pipeline divides the data into train (two thirds)

and test (one third) sets for each adjective, with an equal

proportion of positive and negative examples in both sets. For

example, an adjective that has 9 positive examples (objects)

and 42 negative examples produces a training set with 6
positive and 28 negative examples, and a testing set with 3
positive and 14 negative examples; all 10 trials recorded for

each object are grouped together. The features in the training

sets are normalized and used to create classifiers specific to

each adjective-EP combination.

We compared initial results from a one-element feature

vector against the results of classifying on the entire

47-element feature vector; the one-element feature vector

generally outperformed the full feature vector. Given the

strength of the individual features, we decided to train many

weak classifiers from these individual features and boost

them using Gradient Tree Boosting (GTB), which is ad-

vantageous for heterogeneous data sources and also tolerant

of outliers [21]. The specific implementation from scikit-

learn was Gradient Boosting Classification and LOOCV

performed on learning rate, boosting stages, and maximum

tree depth. With 31 adjectives and 5 motions, we ended the

first training stage with 155 adjective-EP-specific classifiers.

We then fed the test set to these classifiers and computed

an average F1 score for each classifier. These testing results

enable us to select the best EP-specific classifier for each

adjective, which we use for final classification.

B. Dynamic Feature Learning

As seen in Fig. 3, time plays a major role in shaping the

signals from the robot’s tactile and kinesthetic sensors. This



consideration led us to test an alternative machine learning

approach that analyzes the temporal fluctuation of the haptic

signals using Hidden Markov Models (HMMs) [22].

Using HMMs with our recorded haptic signals poses two

significant problems. First, HMMs require discrete signals

rather than continuously varying signals. Second, signals that

have many dimensions or many samples lead to numerical

instability and an overall poor performance when using

HMMs. The first problem can be overcome by discretizing

the data, for example via k-means. The second problem

required dimensionality reduction via PCA and resampling

using interpolation. Given an input signal x ∈ R
n×d, the

processing pipeline to train an HMM is:

1) Reduce the signal dimensionality to p ≤ d via PCA.

2) Resample the signal to m elements using interpolation.

3) Cluster the resulting signal y ∈ R
m×p into k symbols

using k-means.

4) Train an HMM using a discrete signal with length m
and an output alphabet of k symbols.

The main issue with this approach is that several pa-

rameters need to be tuned to avoid over-fitting. The most

important ones are the new number of dimensions p, the

resampling size m, the resampling approach (linear, cubic,

spline or nearest neighbors), the number of clusters k in k-

means (which corresponds to the number of output symbols

in the HMM), and the number of hidden states in the HMM.

We coupled grid search with cross-validation to find the set

of parameters that yielded the best generalization. Similar

to the static-feature-based approach, we used two thirds of

the positive examples in the corpus for training and the

remaining third for testing. The score of each HMM is

calculated as the log-probability of the observed sequence

found by using the forward algorithm.

The dynamic-feature-based approach did not consider the

Tap EP because of its short duration. Furthermore, this anal-

ysis included only the main four tactile channels, omitting

Xg , Ztf , and TDC . This choice yielded 16 signals (4 EPs × 4
tactile channels) for each trial. We then trained 16 HMMs for

each adjective using the pipeline described above. Although

each HMM had its own set of parameters, cross-validation

highlighted some common patterns in the corpus:

• An aggressive resampling with as few as 50 elements

proved to be sufficient for a high HMM score. How-

ever, given the probabilistic nature of HMMs, usually

the shorter the sequence the higher the probability of

observing it. We believe that this effect, while mitigated

by cross-validation and the need for generalization,

may have biased the effective resampling size. Further

analysis will be required to investigate how much the

aggressive resampling affected the results.

• The same applied to the number of dimensions, where 7
to 8 dimensions were found to be sufficient to explain

97% of the variance of an otherwise 38-dimensional

space (in the case of the electrodes for two fingers).

• The cardinality of the HMM alphabet varied between 12
and 20 symbols. This number suggests that the training

data is probably ambiguous, and fine details are required

to distinguish between otherwise very similar signals.

• The number of hidden states is of the same order as

the alphabet. Though expected, this result negatively

affected the required training time for the HMMs.

Once the HMMs were trained, for each adjective we have

a set of 16 log-probabilities that describe the confidence each

model has for having seen a particular pattern. The classifier

that decides if an adjective applies to a certain trial is a linear

SVM trained using the 16 outputs of the HMMs. The penalty

factor C was chosen using cross-validation on a different

split of the training data. Given the nature of the training set,

the number of negative examples is greater than the number

of positive ones.

V. RESULTS

We tested both of our classification approaches on data

reserved from the corpus and also on the 8 previously unfelt

objects shown in Figure 6, labeled by participants in the same

way as those in the corpus.

The following sections report the performance of our

machine learning techniques in terms of precision, recall,

and F1 score, as defined in Table I. Here, tp is the true

positive count (the number of correct positive results

returned by the classifier), fp is false positives (the number

of results incorrectly labeled as positive by the classifier),

and fn is false negatives (the number of positive results

missed by the classifier). To satisfy space constraints, we

report only brief results for our second method.

A. Static Feature Learning

For the static feature learning approach (Sec. IV-A),

we first analyzed the feature vectors to confirm that they

capture meaningful differences in the feel of the objects.

All 47 features were calculated for every Squeeze trial in

the corpus, and each object’s 10 trials were averaged to

yield 51 object-specific average feature vectors. Performing

PCA on these average feature vectors revealed the top two

principal components and the distribution of objects shown

Fig. 6. The final test set. In order from left to right: Cardboard Box, Dark
Foam, Light Foam, Hardcover Book, Cushioned Envelope, Layered Cork,
and Rough/Smooth Acrylic (different sides of the same object).

TABLE I

METRIC EQUATIONS

Precision Recall F1

tp
tp+fp

tp
tp+fn

2 · precision · recall
precision+ recall
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Fig. 7. The first two principal components of the feature space created
from the average Squeeze feature vector of each object. Haptically similar
objects generally appear close to one another, much like the adjective-based
space (Fig. 5).

in Figure 7. By comparing this plot with the adjective

space seen in Figure 5, we observe that both of the first

principal components seem to indicate compliance, a highly

salient object property, with a greater proportion of the

feature variance attributable to this dimension. The second

components do not seem to correlate cleanly, though objects

close together in feature space do generally seem to feel

similar, substantiating the value of these features.

Having intermediate classifiers trained on the features

from just one exploratory procedure allows us to see how

each EP performs for each of the 31 adjectives. The F1 scores

for each adjective-EP combination are shown in Table II;

these results were generated by testing on the third of the

corpus not seen during the intermediate classifier training.

The selected best EP-specific classifiers achieved an av-

erage precision, recall, and F1 score of 0.91, 0.88, 0.88 re-

spectively, across all adjectives on the training set. However,

selecting the maximum EP based on the test set, rather than

merging the results of all of the EPs (as the HMM approach

does), introduces biases that can be seen in the final results.

The final results of the classifiers were calculated by object

rather than by adjective. For example, the human participants

had labeled the dark foam as squishy, thick, compressible,

fuzzy, absorbent, and soft, whereas the classifiers predicted

it to be squishy, compressible, and soft. The static feature

learning’s average F1 score on the previously unfelt objects

shown in Figure 6 was 0.57. This relatively low score

supports our belief that multiple motions should be combined

to increase the recognition of haptic object properties.

B. Dynamic Feature Learning

The adjective-specific SVMs trained on the HMM outputs

(Sec. IV-B) achieved an impressive average precision score

of 0.98 across all adjectives on the reserved corpus data,

due to a low rate of false positives. However, the classifiers

TABLE II

F1 SCORE ACROSS ADJECTIVES AND EXPLORATORY PROCEDURES

Tap Squeeze Hold Slide Fast Slide PE*

absorbent 0.108 0.370 0.000 0.000 0.333 3

bumpy 0.526 0.143 0.000 0.182 0.333 2

compact 0.644 0.795 0.675 0.487 0.574 11

compressible 0.821 0.847 0.806 0.833 0.829 26

cool 0.348 0.324 0.431 0.419 0.417 6

crinkly 0.000 0.143 0.250 0.000 0.000 1

deformable 0.000 0.000 0.190 0.000 0.000 3

fibrous 0.000 0.000 0.000 0.000 0.000 3

fuzzy 0.388 0.097 0.267 0.448 0.327 8

gritty 0.000 0.000 0.000 0.000 0.000 3

hairy 0.000 0.000 0.000 0.000 0.000 2

hard 0.814 0.835 0.913 0.850 0.764 13

hollow 0.000 0.154 0.000 0.667 0.143 4

meshy 0.714 0.000 0.133 0.000 0.000 1

metallic 0.000 0.000 0.000 0.471 0.125 2

nice 0.333 0.000 0.000 0.500 0.488 5

plasticky 0.000 0.286 0.000 0.000 0.000 4

rough 0.386 0.051 0.391 0.491 0.667 5

scratchy 0.526 0.385 0.000 0.000 0.390 4

slippery 0.000 0.000 0.000 0.061 0.378 7

smooth 0.494 0.667 0.510 0.582 0.593 18

soft 0.333 0.769 0.277 0.108 0.150 9

solid 0.787 0.779 0.808 0.787 0.788 12

springy 0.000 0.000 0.000 0.000 0.000 3

squishy 0.686 0.815 0.860 0.772 0.693 18

sticky 0.233 0.143 0.386 0.225 0.170 12

stiff 0.807 0.868 0.855 0.885 0.916 13

textured 0.000 0.000 0.000 0.000 0.000 2

thick 0.500 0.000 0.000 0.606 0.000 4

thin 0.800 0.500 0.857 0.579 0.711 5

unpleasant 0.000 0.000 0.000 0.000 0.000 2
*PE indicates the number of positive examples in the training set.

had a somewhat higher number of false negatives, resulting

in an average F1 score of 0.81 on the reserved training

corpus. To investigate the generalization capabilities of this

approach, we also tested these classifiers on the previously

unfelt objects shown in Figure 6. The average F1 score over

this new set was 0.79, which supports the hypothesis that

our methods can produce a meaningful set of adjectives for

completely new objects when using all EPs.

VI. DISCUSSION AND CONCLUSION

The presented results prove that a robot equipped with

rich multi-channel tactile sensors can discover the haptic

properties of objects through physical interaction and then

generalize this understanding across previously unfelt ob-

jects. Furthermore, we have shown that these object proper-

ties can be related to subjective human labels in the form of

haptic adjectives, a task that has rarely been explored in the

literature, though it stands to benefit a wide range of future

applications in robotics.

Both the static and dynamic learning methods showed

promise in the reported experiments, including the strict

test involving everyday objects the robot had never before

encountered. The static-feature approach yielded an average

F1 score of 0.57 for the 8 objects in this test set, and the

dynamic-feature approach achieved an average F1 score of

0.79. While these raw performance scores are lower than

those achieved by existing research in areas of texture and

object classification, generalizing adjectives to new objects

is a harder problem than instance recognition. These results

establish a baseline against which future efforts in this area

can be compared.



As shown in Table II, the individual scores from the

intermediate classifiers in the static feature learning approach

differ by adjective and by exploratory procedure. Adjectives

with a large number of positive examples achieve good

results across all five EPs. However, when there are only

a handful of positive examples, the results differ more

between the EPs. For example, rough’s F1 score ranges from

0.051 for Squeeze up to 0.667 for Fast Slide, showing that

certain object properties are most easily felt through certain

actions, and confirming the fundamental motivation for using

different exploratory procedures. Adjectives that have only

one or two positive examples in the training set tend to

achieve low F1 scores regardless of the EP, implying that

our current static-feature-based approach cannot learn the

meanings of these adjectives with a single best EP from so

few examples. This limitation will become a key focus of our

future research, as we shift toward online learning and no

longer have the luxury of many positive examples. Also, the

low overall F1 score on the test set by a single best EP in the

static-feature-based approach suggests that multiple EPs are

necessary to determine properties of objects. The more novel

dynamic-feature-based learning approach that combined all

EPs has already demonstrated strong results for adjectives

with only a small number of examples, so we will look

for ways to combine the two approaches as well as to use

information from multiple EPs. Future work will also involve

Bayesian techniques for selecting among several available

EPs, as done by Fishel and Loeb for texture recognition [10].

Looking again at the data in Table II, we notice two other

interesting trends. First, even though an increase of training

examples generally leads to an increase in performance, some

adjectives do not follow this rule. For example, the system

seems to have struggled to learn the meanings of nice and

soft, though they have 5 and 9 positive examples in the

training set, respectively. We suspect that ambiguities and

multiple physical interpretations of the meaning of these

adjectives may make them harder to learn from a handful

of examples compared to more straightforward adjectives,

as found in the tactile adjective study by Picard et al. [18].

Second, the adjectives related to textural properties (fibrous,

gritty, hairy, rough, scratchy, slippery, smooth, and textured)

seem to have lower overall performance than adjectives per-

taining to other object properties. This difference may stem

from how the robot executed the EPs, from shortcomings

in our feature set, or from a lack of textural sensitivity in

our BioTac sensors, possibly due to a gradual wearing away

of its synthetic fingerprints. Our future work will investigate

these trends along with questions pertaining to the connection

between visual and haptic perception for adjective learning.
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